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Résumé

A great deal is known about the global topological structure of chaotic attractors in three dimensional
spaces, but little is known about the spectrum of topologies allowed to chaotic attractors in higher
dimensions. We review some of the tools that have contributed to this understanding in three dimensions
and show how these tools can be applied in higher dimensions. Specifically, we show how singularities
of mappings can be used to classify chaotic attractors in generalized tori DN × S1 where stretching and
folding are the mechanisms creating chaos. We show how symmetry arguments have been used to create
chaotic attractors that are generated by tearing and squeezing mechanisms. We introduce families of
locally diffeomorphic chaotic attractors that are described by quantum numbers in R3 and show that
these quantum indices are group labels in higher dimensions. Simple classical measures are introduced to
help describe chaotic attractors in any dimension.

1 Introduction

The global topological structure of strange attractors SA in three dimensions is more or less known
in some detail [1,2,3] for two broad reasons. At the intuitive level, we can visualize such attractors rather
easily, sometimes even by closing our eyes and using our imaginations. At the mathematical level there
is a theorem — the Birman-Williams theorem [4] — that allows us to represent every dissipative chaotic
attractor by a surrogate — a two-dimensional branched manifold. These surrogates can all be built up
Lego c© style by plugging together two types of units — stretch and squeeze units — in any discernible
way provided two elementary conditions are met. In higher dimensions intuition fails and theorems fail
to exist.

In order to understand the global topology of chaotic attractors in higher dimensions we must rely
on analogies with the structure of attractors in three-dimensional spaces. For this reason we begin with
a review of the properties of these low dimensional attractors. Broadly speaking there are two types :
(1) those created by the infinite repetition of stretching and folding ; and (2) those created by infinite
repetition of stretching, tearing, and squeezing. The first class of attractors live inside a torus of genus
g = 1 : D2 × S1. The latter live inside higher genus tori : g ≥ 3 [5,6]. We exploit this decomposition to
get a grip on the spectrum of chaotic attractors that we can expect to encounter in higher-dimensional
spaces.

2 Three Dimensions

The Birman-Williams theorem is the most powerful tool at our disposal for the study of chaotic
attractors in three dimensions. A consequence of this theorem is that a chaotic flow (in fact, its surrogate,
a branched manifold) in R3 can be decomposed into a union of two types of units : stretch units and
squeeze units, shown in Fig. 2(A). These units can be plugged together in any way provided only that (1)
outflows are connected to inflows and (2) there are no free ends. Each such union is a branched manifold
that represents a chaotic attractor. Four such branched manifolds are shown in Fig. 2(B). We notice that
three of these ((a) − (c)) live inside a torus of genus g = 1 and of these, one (c) lives in a toral annulus.
The fourth (d) lives inside a higher-genus (g = 3) torus.
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(A) (B)

Fig.1. (A) Stretching and squeezing units that are used to build up an arbitrary branched manifold. Cf. [1], Fig.
5.3 (B) Branched manifolds for four standard strange attractors. (a) Rössler attractor ; (b) Duffing attractor ; (c)
van der Pol attractor ; (d) Lorenz attractor. Cf. [1], Fig. 4.1

3 3D, g = 1, D2
× S1

We concentrate in this Section on three dimensional chaotic attractors that live in a torus of genus one
(solid tire). Most of the experimental data sets that can successfully be embedded in three dimensions
share this property [7].

When this is the case it is useful to construct a Poincaré surface of section, PS. This is a surface
whose intersection with the torus is a disk, D2. The flow is usefully treated as a return map of the
Poincaré section to itself : more specifically of PS ∩ SA to itself. By combining this with the results
of the Birman-Williams theorem, we see that the entropy-generating mechanism is the return map of
PS ∩BM, where BM is the branched manifold that describes the strange attractor. This intersection is
a one-dimensional set that can be chosen without singularities : either an interval I or a circle S1. The
only possible singularities of maps of these one-dimensional sets to themselves are singularities of fold
type : A2. If the return map I → I has n fold singularities the corresponding branched manifold has n+1
branches, where n ≥ 1. Global topology has a nontrivial impact on local singularities : for S1, n must be
even.

It is possible to represent the coordinates of a point in a genus-one strange attractor in the form
(X, Y, φ),with (X, Y ) ∈ D2 and φ ∈ S1. For the Duffing and van der Pol nonautonomous systems φ = ωt
mod 2π. For autonomous sytems such as the Rössler system a similar representation is possible for
standard control parameter values, using x + iy = Aeiφ and (X, Y, φ) = (A, dA/dφ, φ). Plots of the
Duffing and Rössler attractor in this toroidal representation are shown in Fig. 3.

In this representation the attractor itself has 2π periodicity. We can exploit the periodicity of attractors
in tori of genus one to construct entire families of strange attractors closely related to the original attractor
[8]. This is done as follows. Create a diffeomorphism of the strange attractor by rotating the coordinates
(X, Y ) in the plane φ through an angle θ = θ(φ). Periodicity of the strange attractor requires θ(φ = 2π) =
θ(φ = 0)+2πn2, where n2 is an integer. Such a diffeomorphism twists the strange attractor through 2πn2

radians over the length of the torus. The original attractor and its image are not isotopic unless n2 = 0.
Since the mapping is a diffeomorphism and since all fractal dimensions and Lyapunov dimensions are
diffeomorphism invariants, all members in this family (n2 = · · · ,−2,−1, 0, +1, +2, · · ·) have identical
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(A) Duffing attractor, subharmonic lift (B) Rössler attractor, Toröıdal representation
Index (n1, n2) = (1, 0) Index (n1, n2) = (1, 0)

Fig.2. Toroidal representation of (A) the Duffing attractor and (B) the Rössler attractor.

spectra of fractal dimensions and Lyapunov exponents. Members of the Duffing family with n2 = −1, +1
and of the Rössler family with n2 = −1, +1 are shown in Fig. 3.

There are two real-valued measures that are suitable for distinguishing among members in these
families of strange attractors. These measures are average values of the energy- and angular momentum-

like integrals. For example, the energy measure is 〈E〉 = limT→∞
1
T

∫ T

0
1
2 (Ẋ2 + Ẏ 2)dt, with the angular

momentum average defined analogously. For diffeomorphisms generated by uniform rotations θ(φ) = n2φ
these integrals behave exactly as one would expect from experience with elementary classical mechanics.
These integrals are shown for the family based on the Duffing attractor in Fig. 4. The energy and angular
momentum integrals for subharmonic lifts of the Duffing attractor are shown in Fig. 3.

If the “quantization condition” θ(φ = 2π) = θ(φ = 0) + 2πn2 is not satisifed (i.e., n2 6= integer) then
harmonic lifts are not possible. If the condition θ(φ = 2π) = θ(φ = 0) + 2πn2/n1 is satisfied, periodic
boundary conditions are satisfied for ωt = 2πn1 and the attractor closes up with a period n1T1. When it
closes up the plane (PS) containing the intersection of the attractor has rotated through 2πn2 radians.
These are subharmonic lifts of the founding member of the family of attractors. Subharmonic lifts are
indexed by two relativeluy prime quantum numbers (n1, n2), n1 ≥ 1. Two subharmonic lifts of the Rössler
attractor are shown in Fig. 3.

4 3D, g > 1

Some well-known strange attractors are created by repetition of the stretching-tearing-squeezing me-
chanism. The prototypical example is the Lorenz attractor. Three dimensional attractors generated by
this mechanism live in bounding tori of genus g with g > 1. In R3 closed bounded two-surfaces are
described by a single integer, the genus g (Intrinsic description). However, these surfaces are dressed by
the flow that generates the strange attractor within. As a result more than a single index g is required
to distinguish bounding tori that contain inequivalent strange attractors with the same genus [2,3]. Fig
7 shows the five inequivalent canonically dressed tori of genus 7 that can contain strange attractors [9].
Also shown in this figure are three ways to label these canonical tori as well as the transition matrices
that describe how the flow can progress from one component of the Poincaré surface of section to other
components. The Poincaré surface of section is the union of g − 1 disks, each bounded by a meridian of
the torus. Every three-dimensional strange attractor is bounded by one of these tori, as shown in Table
1.

Chaotic attractors in some of the lower-g bounding tori can be constructed by lifting chaotic attractors
in a genus-one bounding tori using some simple group theoretical arguments [9]. This construction fails
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Index (n1, n2) = (1,−1) Index (n1, n2) = (1,−1)

Index (n1, n2) = (1, +1) Index (n1, n2) = (1, +1)
(A) Duffing attractor, subharmonic lift (B) Rössler attractor, toröıdal representation

Fig.3. Toroidal representation with n2 = −1 (top) and n2 = +1 (bottom) of members of (A) the Duffing family
and (B) the Rössler family of attractors. Darker : Y > 0 ; Lighter : Y ≤ 0.

when the bounding torus does not have sufficient symmetry. In this case other lifting mechanisms must be
used. The result is a set of (g−1) → 1 local diffeomorphisms between the lifted attractor and the attractor
in a genus-one bounding torus. In a very real sense we create “covering attractors” in genus-g bounding
tori by creating“topological lifts” from a simpler attractor, one generated by simple stretching-and-folding
processes.

Since two-parameter families of chaotic attractors can be created from any strange attractor, there is
a very large variety of chaotic attractors even in the low-genus cases. It is not yet known how to classify
them all.

The number of canonical bounding tori grows rapidly with the genus g, as shown in Table 2. This
number, N(g), increases exponentially with g : N(g) ≃ ehgg. In a computational tour-de-force Katriel
[10] has shown that hg = log(3.0). This author believes that hg = log(3) for the same reason that the
topological entropy of the logistic map is log(2), not log(2.0).

5 Higher Dimensions

In N dimensions there are N Lyapunov exponents λ1 ≥ λ2 ≥ · · · ≥ λN . These split into three groups :
the nu positive Lyapunov exponents that describe unstable motion (stretching), the zero exponent(s),
which describes the flow direction, and the negative exponents that describe the squeezing directions. We
will assume that only one Lyapunov exponent is zero : λnu+1. Associated with each Lyapunov exponent
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(A) Energy integral (B) Torsion integral

Fig.4. Classical (A) energy and (B) torsion integrals in the Duffing family of harmonic attractors. Plots show
dependence on the quantum number n2.
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(A) Index (n1, n2) = (2,−1) (B) Index (n1, n2) = (2, +1)

Fig.5. Subharmonic lifts of the Rössler attractor with quantum numbers (n1, n2) = (A) (2,−1) and (B) (2, +1).

there is a partial dimension d1 ≥ d2 ≥ · · · ≥ dN , with 1 ≥ di ≥ 0 [11] . The partial dimensions are +1 for
the expanding and flow directions with λi ≥ 0 : the strange attractor is smooth in these directions. In the
squeezing directions, in which the attractor has a fractal structure, the partial dimensions are generally
less than one.

In dimensions greater than 3 much less is known about the topology of strange attractors. There is
the hope that a pair of theorems can be found to simplify our understanding of such attractors. Both
depend on the Lyapunov exponents of the attractor. The first theorem would identify the dimension,
K, of an “embedding manifold” EM containing the strange attractor. Specifically, The weighted sum
Dj =

∑j
i=1 λidi is formed. This sum generally increases with j, levels off at j = nu + 1 when λnu+1 = 0,

and decreases to zero thereafter. Define K to be the smallest integer for which DK = DK+1 = · · ·DN = 0.
It would be nice to have a theorem stating that a K-dimensional manifold can be found that contains
the strange attractor. At an intuitive level, this means that the flow is very strongly attracted to the
embedding manifold along the directions with the most strongly contracting eigendirections (those with
the most negative Lyapunov exponents : λK+1, λK+2, · · · , λN ). Once inside the embedding manifold
the flow never leaves it. Further, information about the most negative Lyapunov exponents is no longer
available : information about only the ns = K−(nu+1)“weakly negative”exponents λj , j = nu+2, · · · , K
is available. Here nu is the number of unstable directions (positive Lyapunov exponents) and ns is the
number of stable directions within the embedding manifold.
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(A) Energy integral (B) Torsion integral

Fig.6. Classical (A) energy and (B) torsion integrals in the Duffing family of subharmonic attractors. Plots show
dependence on the quantum numbers (n1, n2) is through their ratio n2/n1.

Tab.1. All known strange attractors of dimension dL < 3 are bounded by one of the standard dressed tori.

Strange Attractor Dressed Torus Period g − 1 Orbit

Rossler, Duffing, Burke and Shaw A1 1
Various Lasers, Gateau Roule A1 1
Neuron with Subthreshold Oscillations A1 1

Shaw-van der Pol A1 ∪ A
(1)
1 1 ∪ 1

Lorenz, Shimizu-Morioka, Rikitake A2 (12)2

Multispiral attractors An (12n−1)2

Cn Covers of Rossler Cn 1n

C2 Cover of Lorenz(a) C4 14

C2 Cover of Lorenz(b) A3 (122)2

Cn Cover of Lorenz(a) C2n 12n

Cn Cover of Lorenz(b) Pn+1 (1n)n

2 → 1 Image of Fig. 8 Branched Manifold A3 (122)2

Fig. 8 Branched Manifold P5 (14)4

(a) Rotation axis through origin.
(b) Rotation axis through one focus.

Tab.2. Number of canonical bounding tori as a function of genus, g.

g N(g) g N(g) g N(g) g N(g) g N(g)

1 1 5 2 9 15 13 368 17 14290
2 0 6 2 10 28 14 870 18 36824
3 1 7 5 11 67 15 2211 19 96347
4 1 8 6 12 145 16 5549 20 252927

The second theorem would guarantee the existence of an nu + 1-dimensional “manifold with singula-
rities” resulting from a Birman-Williams-like projection. Such a projection identifies all points with the

same future : x ≃ y if |x(t) − y(t)|
t→∞
−→ 0. This projection mods out the ns-dimensional stable manifold

(the “weakly negative”Lyapunov eigendirections) over any point in the strange attractor. Such a theorem
would allow us to identify strange attractors with their singular limits under the projection : a process
that has made the classification and analysis of strange attractors in R3 possible.
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Fig.7. There are five canonically dressed tori of genus 7. Two inequivalent flows have Young partitions 23.

6 D > 3, g = 1, Dnu+ns
× S1

We assume first that the embedding manifold is a higher-dimensional torus DK−1×S1 = Dnu+ns×S1.
In this case the Poincaré surface of section is a constant phase slice of the torus : φ = cnst., 0 ≤ φ < 2π. The
slice is an nu + ns-dimensional space Dnu+ns . The flow is characterized, modulo some group theoretical
indices, by a return map. If the second theorem, or some useful version of it, is true, the return map
can be treated as a mapping of a nu-dimensional space to itself. In Fig. 8 we show mappings of one
dimensional manifolds (nu = 1) and two dimensional manifolds (nu = 2) to themselves. These mappings
must generate entropy : therefore they must have singularities. The two mappings shown generate the
fold (A2) and the cusp (A3) singularities, respectively.
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Fig.8. (left) Intersection of a strange attractor in R2 × S1 with a Poincaré section is almost an interval. The
Poincaré return map exhibits a fold singularity, producing a logistic map. (right) Intersection of a strange attractor
with two positive Lyapunov exponents in R3 ×S1 with a Poincaré section is almost a plane section. The Poincaré
return map exhibits a cusp singularity. Cf. [1], Fig. 11.4, Fig. 11.5.

Under the assumptions outlined above (two provable theorems), we can make inroads on the problem
of describing higher dimensional strange attractors by describing the kinds of singularities that can occur
in mappings of k dimensional manifolds to themselves in spaces of dimension K − 1. In Fig. 8 the stable

singularities of mappings of the interval to itself in R2 (left) and of the plane to itself in R3 (right) are
shown. In R3 the double fold singularity (x, y) → (x2, y2) is also possible but it is not stable, it perturbs
to a cusp and a fold singularity.

The study of stable singularities of mappings Rk → Rk has a long history [16]. They are described by
Young partitions Λ with row lengths (λ1, λ2, · · · , λr) and λi+1 ≤ λi. The Young partitions for the fold
and cusp maps in Fig. 8 are (1) and (1, 1). For the cusp λ1 = 1 indicates that the mapping has rank one
less than full (2) on the fold lines and λ2 = 1 tells us that, on the fold set the mapping drops by one again
at the cusp point (the origin). In general the row length y1 describes how much the rank of the mapping
drops on the singularity of largest dimension ; y2 describes by how much the mapping drops in rank at
the second singularity when restricted to the first singularity, etc. The singularity may be stable under
perturbations A2 : x → x2 or may be unstable under perturbations An : x → xn, n > 2. In the latter
case for n = 3 the singularity (x, y) → (x3, y) perturbs to (x, y) → (x3 + xy, y), which is structurally
stable.

For the purposes at hand the singularities we wish to consider have three parts : a germ, a universal
perturbation (also called an unfolding), and folding directions. As an example, the two-dimensional germ
(x, y) → (x3 + y2, xy) has a three-dimensional unfolding with basis vectors (x, y, x2) : DG = 2, DU =
3 [16]. The structurally stable mapping R2+3 → R5 is (x1, x2; u1, u2, u3) → (x3

1 + x2
2 + u1x + u2y +

u3x
2
1, xy, u1, u2, u3). In order for the folding to occur smoothly in the space Dnu+ns it is necessary that

there be at least two (= dimension of the germ) additional “folding”directions (f1, f2) : DF = 2. In short,
the singularity (x, y) → (x3 + y2, xy) is first encountered in flows in Dnu+ns ×S1 for nu ≥ DG +DU = 5,
ns ≥ DF = DG = 2, nu +ns ≥ 7. When this inequality is saturated (nu +ns = 7) a discrete classification
may be possible.

In summary, flows in K dimensional embedding manifolds can be classified by germs of dimension
DG with structurally stable unfoldings of dimension DU provided DG + DU ≤ nu and ns ≥ DF ≥ DG.
For the cuspoids An with x → xn, DG = 1, DU = n − 2, DF = 1 and nu ≥ 1 + (n − 2) (n ≥ 2) and
ns ≥ DF = 1. In three dimensions the only stable singularity is the fold : nu = 1, ns = 1, and one time
flow direction.

The construction introduced in Section 3 can be applied to strange attractors in the torus Dnu+ns ×S1

in an attempt to create families of globally or locally diffeomorphic strange attractors. The idea is the
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same : the results are different. Strange attractors in the torus Dnu+ns × S1 are periodic, with period
2π. That is, the attractor is invariant under φ → φ + 2π, where φ is the angular coordinate in S1.
New attractors SA′ are created from an attractor SA by a φ-depentent rotation θ(φ). Specifically, we
apply a rotation R(n̂, θ) to each section in such a way that periodic boundary conditions are satisfied :
R(n̂, θ(φ = 0)) = R(n̂, θ(φ = 2π)). For simplicity we keep the rotation axis n̂ fixed during this process.
This creates a new attractor from the original. The two are globally diffeomorphic. As a result their
spectra of fractal dimensions and Lyapunov exponents are identical, and cannot be used to distinguish
one from another. On the other hand, classical measures, such as average energy and angular momentum
can be used to help distinguish among the members of a family. As the axis n̂ around which the rotation
takes place is varied over the sphere surface, the energy integral also varies. These energy bands for a
strange attractor in R3 × S1 are shown in Fig. 9.

Fig.9. The Rössler equations were periodically driven to create a strange attractor in R3 ×S1. The basic member
of this family was used to create an entire family of strange attractors by satisfying periodic boundary conditions.
The energy depends on the orientation of the rotation axis n̂, held fixed during the rotation. The range of energy
values is shown here.

The next question to address is whether the harmonic and subharmonic lifts of a founding member
of a family of strange attractors SA ⊂ Dnu+ns × S1 are all topologically inequivalent, as is the case for
familites in D2 × S1.

Transformations of period T depending on the phase φ(t) in the interval 0 ≤ t ≤ T can be interpreted
as paths in the parameter space of the Lie group SO(N) (N = nu + ns). Two paths in the parameter
space of SO(N) starting at φj(0) = 0 (j = 1, 2) and ending at integer values (to satisfy periodic boundary
conditions) φj(T )/T = nj can or cannot be deformed into each other depending on whether n1 − n2 is
even or odd. When N > 2, the fundamental group of SO(N) has two elements, those corresponding to
rotations through 2πn radians with n even (ne) or with n odd (no). Once again, the path φ(t) can be
chosen as linear, but this time inequivalent paths exist with n = 0 or n = 1 only. For the deformation in
SO(3) that takes a path with n = 2 to the path with n = 0 see [14].

As a result, any strange attractor in DN×S1 (N > 2) can form the base for only four diffeomorphic but
topologically inequivalent chaotic attractors. These are labeled by indices from two two-element groups :
a parity index ρ = {e, o} from O(N)/SO(N), and an index σ = {ne, no} = {0, 1} labeling an element in
the fundamental group of SO(N) :

SA
ρenωLt

−→ SAρ,σ (1)

This classification can be extended to subharmonic transformations. The procedure follows the steps
indicated in Sect. 3, with some subtle differences. For the fundamental group operation ne there are no
subharmonic attractors. Subharmonics exist only for the fundamental group operation no. The result
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leads to two-parameter families of chaotic attractors that are locally diffeomorphic but not globally
diffeomorphic (p > 1) with the original attractor. The members of these families are indexed by two
discrete indices : the parity index ρ and a positive integer p related to the period pT at which the proper
boundary conditions are satisfied :

SA
ρ exp((1ω/p)(n̂·L)t)

−→ SA±1,no,p (2)

As a result of this analysis, we conclude that far fewer chaotic attractors can be constructed by rotation
transformations in higher dimensions than in three dimensions.

7 D > 3, g > 1

The strange attractors in tori DK−1 × S1 are created by smooth processes : stretching and folding,
whether K − 1 = 2 or K − 1 > 2. In three dimensions we understand how to relate strange attractors
in higher-genus tori from strange attractors in the simple genus-one torus. The construction involves :
many-one maps, singularities, group theory, symmetry and, when symmetry is insufficient, topology.

It is possible to use the same procedures in higher dimensions to construct attractors in RK that do
not live in a toroidal manifold DK−1×S1. This has been done both for nonautonomous and autonomous
four dimensional flows.

The nonautonomous flow is a periodically driven Rössler attractor, whose phase space is R3×S1. This
was mapped into R4 using the natural embedding : (x1, x2, x3, ωt) → (y1, y2, y3, y4), with y1 = x1, y2 = x2

and y3 = (a− x3) cosωt, y4 = (a− x3) sin ωt. The radius a was chosen so that a− x3(t) > 0 for all t. The
autonomous four-dimensional flow generated a strange attractor in a torus D3 × S1. The treatment of
both attractors from this point on was the same.

A Lorenz-like attractor can be created by constructing a double cover of the Rössler attractor in the
usual way [12,13,9]. If (x1, x2, x3) are coordinates in a Rössler attractor, a double cover with coordinate
(z1, z2, z3) is created using the 2 → 1 mapping x1 = z2

1 − z2
2 , x2 = 2x1x2, x3 = z3. In the present case

four-fold covers with coordinates (z1, z2, z3, z4) were created using the 4 → 1 maps (paired double covers) :
y1 = z2

1 − z2
2 , y2 = 2z1z2 and y3 = z2

3 − z2
4 , y4 = 2z3z4. These four-fold lifts from D3 ×S1 → R4 are shown

in Fig. 10.

Fig.10. Four-fold covers of periodically driven Rössler equations (left) and a four dimensional autonomous dyna-
mical system generating a strange attractor in D3 × S1.
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8 Conclusions

We have constructed families of topologically inequivalent strange attractors in three dimensional tori
D2 × S1 based on a single strange attractor (periodically driven Duffing, van der Pol, Takens-Bogdanov
attractors, Rössler attractor). Family members are indexed by three quantum numbers (ρ, n, p). Members
of each family are either isotopic to, globally diffeomorphic with, or locally diffeomorphic with the original
attractor, as indicated :

Diffeo. Type Parity Fund. Gp. Subharmonic
Isotopic to Id ρ = +1 σ = 0 p = 1
Global ρ = ±1 σ = n p = 1
Local ρ = ±1 σ = n 6= 0 p > 1

(3)

with n and p relatively prime in the last line. Each quantum number has a group-theoretical interpretation.
This construction has been extended to attractors in N + 1 dimensional solid tori DN × S1, with result
summarized below :

Diffeo. Type Parity Fund. Gp. Subharmonic
Isotopic to Id ρ = +1 σ = ne p = 1
Global ρ = ±1 σ = ne, no p = 1
Local ρ = ±1 σ = no p > 1

(4)

In this case three indices are still required to identify members of each family. They are all group opera-
tions : ρ ∈ O(N)/SO(N) ≃ Z2, σ is a member of the fundamental group of SO(N), also equivalent to Z2,
and p ≥ 1 is a homotopy index of SO(2). Since the standard real measures (Lyapunov exponents and frac-
tal dimensions) are invariant under global and local diffeomorphisms, they are useless for distinguishing
different members of a family. We have introduced two classical mechanics statistics for distinguishing
among them. These are an average energy integral and an average angular momentum integral about
the rotation axis. Both statistics depend systematically on the angular frequency ω′ and are simple to
compute from time series.

The biggest losses in going from strange attractors in D2 × S1 to strange attractors in DN × S1

(N > 2) are loss of the global torsion index n (from SO(2)) [15] and its replacement by a Z2 valued
index σ (from SO(N)), and the greatly reduced number of topologically inequivalent families that can
be constructed from diffeomorphisms that satisfy periodic boundary conditions after 1 or p periods.
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