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Abstract. We verify experimentally a modified fluctuation-dissipation relation for displacement fluctuations of
a micron-sized silica particle immersed in water in a non-equilibrium steady state (NESS) with non-vanishing
probability current. A NESS is implemented by means of a toroidal optical trap created by a rotating laser beam
with intensity modulation which exerts a constant non-conservative force on the particle against a sinusoidal
potential on a circle. We measure the autocorrelation function of an observable related to the angular position of
the particle, the corresponding integrated response function due to a small perturbation of the amplitude of the
periodic potential, and a corrective term given by the constant probability current. We find that the correlation
minus the corrective term times the inverse temperature of the surrounding water is equal to the integrated
response. The results can be interpreted as an equilibrium-like fluctuation-dissipation relation in the Lagrangian
frame moving at the mean local velocity of the particle determined by the probability current.

1 Introduction

The validity of the fluctuation-dissipation theorem (FDT) in systems out of thermal equilibrium has
been the subject of intensive study during the last years. We recall that for systems in equilibrium with
a thermal bath at temperature T , the FDT establishes a simple relation between the 2-time correlation
function C(t− s) of a given observable and the linear response function R(t− s) of this observable to a
weak external perturbation

∂sC(t− s) = kBTR(t− s). (1)

However, Eq. (1) is not necessarily fulfilled out of equilibrium and violations are observed in a variety of
systems such as glassy systems [1,2], granular matter [3] and biophysical systems [4].

The lack of a general framework describing FD relations in non-equilibrium situations has motivated
some theoretical works devoted to a comprehensive study of this issue in simple stochastic systems
[5,6,7,8,9,10]. In this spirit, a modified fluctuation-dissipation theorem (MFDT) has been recently found
for non-equilibrium steady systems with few degrees of freedom evolving according to a Langevin equation
possibly including non-conservative forces [10]. In particular, this MFDT holds for the overdamped motion
of a particle on a circle (0 ≤ θ < 2π) in the presence of a periodic potential U(θ) = U(θ + 2π) and a
non-conservative force F (θ) = F (θ + 2π)

θ̇ = −∂θU(θ) + F (θ) + ζ, (2)

where
∫ 2π

0
F (θ)dθ 6= 0, ζ is a white noise term of mean 〈ζ(t)〉 = 0 and covariance 〈ζ(t)ζ(s)〉 = 2Dδ(t− s),

with D the diffusivity. The non-equilibrium steady state (NESS) associated to Eq. (2) is described by
a constant non-vanishing probability current j along the circle and by an invariant probability density
function ρ0(θ) that allow to define a local mean velocity v0(θ) = j/ρ0(θ). For a stochastic system in NESS
evolving according to Eq. (2), the MFDT reads

∂sC(t− s) − b(t− s) = kBTR(t− s), (3)
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84 J. R. Gomez-Solano et al.

where the 2-time correlation of a given observable O(θ) is defined by

C(t− s) = 〈O(θ(t))O(θ(s))〉0, (4)

and the linear response function to a time dependent perturbation h(t) is given by the functional derivative

R(t− s) =
δ

δh(s)

∣∣∣∣
h=0

〈O(θ(t))〉h. (5)

In Eq. (4) 〈...〉0 stands for an ensemble average over NESS distributed according to ρ0 whereas in Eq. (5),
〈...〉h denotes the average over the time-dependent perturbed states. In the MFDT (3), the correlation
b(t− s) is given by

b(t− s) = Θ(t− s)〈O(θ(t))v0(θ(s))∂θO(θ(s))〉0, (6)

where Θ is the Heaviside step function. This new term plays the role of a corrective term of C(t− s) in
the usual fluctuation-dissipation relation (1) taking into account the effect of the probability current.

In the present work, we firstly show the experimental results describing the NESS attained by a
micron-sized particle moving in a toroidal optical trap whose dynamics is claimed to be modeled by the
Langevin dynamics of Eq. (2), namely the constant probability current, the invariant density and the
local mean velocity. Further, by computing the correlation function C(t), the integrated corrective term

B(t) ≡
∫ t

0
b(t− s)ds and by directly measuring the integrated response function χ(t) =

∫ t

0
R(t− s)ds for

a proper choice of the observable O(θ), we verify that Eq. (3), in its integral form,

C(0) − C(t) −B(t) = kBTχ(t), (7)

is satisfied by this system within experimental accuracy. Accordingly, we follow the Lagrangian-frame
interpretation discussed in [10] which implies that an equilibrium-like FD relation for the particle motion
(similar in form to Eq. (1)) can be restored in the reference frame moving with the local mean velocity
v0.

2 Experimental description

In order to create experimentally a system with the Langevin dynamics of Eq. (2) in NESS, we prepare
a small sample cell containing a extremely small volume fraction of spherical silica particles of radius r =
1 µm diluted in ultrapure water. The experiment is performed at a room temperature T = 20.0 ± 0.5◦

C at which the dynamic viscosity of water is η = (1.002 ∓ 0.010) × 10−3 Pa s. The sample cell is placed
in an optical tweezers system with the purpose of trapping a single particle and isolate it from the rest
during the experiment. Once the particle under study is far enough from all sources of perturbations, it
is trapped by a toroidal optical trap. This kind of trap consists on a Nd :YAG diode pumped solid state
laser beam (Laser Quantum, λ = 1064 nm) focused by a microscope objective (63×, NA = 1.4) whose
waist represents the smallest circle of the torus scanning a larger circle of radius a = 4.12 µm in the
horizontal plane at a rotation frequency of 200 Hz. The rotation of the focused beam is accomplished by
means of two coupled acousto-optic deflectors working with a π/2 phase shift. The toroidal trap is created
10 µm above the inner bottom surface of the sample cell where hydrodynamic boundary-coupling effects
on the particle motion are negligible. At a rotation frequency of 200 Hz, the laser beam is not able to hold
the particle but drags it regularly a small distance when passing through it [11]. The diffusive motion of
the particle along the radial direction during the absence of the beam is small enough so that it remains
confined in the circle of radius a. Therefore the angular position of the particle θ (measured modulo 2π) is
the only relevant degree of freedom of the dynamics. In addition, the laser power is sinusoidally modulated
around 30 mW with an amplitude of 7% of the mean power, synchronously with the deflection of the
beam at 200 Hz in such a way that a static sinusoidal intensity profile is created along the circle. This
trapping situation acts a constant non-conservative force f associated to the mean kick which pushes the
particle against a periodic sinusoidal potential U(θ) = A sin θ due to the periodic intensity profile. The
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Fig. 1. (a) Profile of the periodic potential associated to the laser intensity modulation of the toroidal trap. The
arrow indicates the direction of the non-conservative force f . (b) Invariant probability density function of the
angulat position of the particle in NESS. Inset : Local mean velocity of the particle.

calibration and the determination of the values of the parameters f and A is accomplished by means of
the method described in [12]. We obtain f = 6.60 × 10−14 N and A = 68.8kBT = 2.78 × 10−19 J. The
experimental potential profile is shown in Fig. 1(a) (black solid line). In this way, the time evolution
of θ is claimed to follow the Langevin dynamics of Eq. (2) [12] with F = f/(6πηra) = 0.85 rad s−1,
B = A/(6πηra2) = 0.87 rad s−1, and D = kBT/(6πηra

2) = 1.26× 10−2 rad2 s−1. Images of the intensity
contrast of the particle on the focal plane x− y determined by the circle of radius a are recorded with a
resolution of 160 × 130 pixels at a sampling rate of 150 frames per second for detection.

Tracking of the particle barycenter (x(t), y(t)) is achieved with an accuracy of a few nanometers from
which the angular position of the particle θ(t) with respect to the trap center is found. We obtained
200 time series {θ(t)} of duration 66.67 s with different initial conditions {θ0 = θ(0)} sampled every
5 minutes for the determination of the stationary quantities C and B of Eq. (3). Additionally, 500
times series of duration 100 s were specially devoted for the determination of χ. In this case during
each interval of 100 s we apply a Heaviside step-like perturbation to the amplitude of the potential
A(t) = A+ δA[Θ(t− t0) −Θ(t− (t0 + T ))] with T = 33.33 s the duration of the perturbation, 0 < t0 <
66.67 s the instant at which it is switched on, and δA the intensity of the perturbation. This is accomplish
by suddenly switching the laser power modulation from 7% to 7.35% of the mean power (30 mW). By
keeping constant the mean power during the switch we assure that the value of f remains also constant.
The experimental shape of the perturbed potential of amplitude A+δA is shown in Fig. 1(a) (red dashed
line). In this way, we extracted 500 perturbed trajectories {θ(t)}δA of duration T = 33.33 s. This duration
is long enough to assure that after switching off the perturbation the system actually has attained a
NESS before the beginning of the next step-like perturbation. We checked that the value of δA obtained
by means of this procedure (δA = 0.05A) is small enough to remain within the linear response regime
for time lags 0 ≤ t ≤ 3.5 s. For 3.5 s < t nonlinearities become important. Consequently, the response
function is only measured for the first 3.5 s of the perturbed trajectories where linear response regime
holds.

3 Results

We check that after a short transient, the particle motion attains a NESS described by a non-vanishing
constant probability current j along the torus in the orientation of the laser beam rotation and by an
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Fig. 2. a) Comparison between the different terms needed to verify Eq. (7), as functions on the time lag t. b)
Expanded view of the comparison between C(0) − C(t) − B(t) and kBTχ(t) in Fig 2(a). The thin red dashed
lines represent the error bars of the measurement of the integrated response.

invariant probability density function ρ0(θ). The probability current is related to the global mean velocity
of the particle by the expression j = 〈θ̇〉0/(2π). Hence, we determine the value of 〈θ̇〉0 from the slope
of the linear fit of the 200 trajectories (not taken modulo 2π) leading to j = 3.76 × 10−2 s−1. The
invariant density shown in Fig. 1(b) is computed from the histogram of each time series {θ(t)} averaged
over the 200 different initial conditions. Note that in the corresponding equilibrium situation (f = 0)
the probability maximum would be located at the minimum of U(θ) (θ = 3π/2). However, in NESS the
presence of the non-conservative force f > 0 shifts the maximun of ρ0(θ) in its own direction. The position
of the maximum depends on the value of f . In order to enhance the stochastic nature of the dyanmics,
by chosing F < B we purposely created a situation in which the particle stays long time around the
maximum θ ≈ 6 whereas the rest of the circle is rarely visited during the mean rotation. In Fig. 1(b) we
also show the local mean velocity v0(θ) of the particle associated to the probability current through the
torus. The local mean velocity is given by v0(θ) = j/ρ0(θ) and its value at a given position θ represents
the average of the instantaneous velocity θ̇ restricted to the ensemble of trajectories passing through θ.

With the purpose of determining correctly the different terms involved in Eq. (3), the observable
O(θ) must be chosen consistently in both sides of such relation. The change of the potential U(θ) →
U(θ) + δA sin θ due the application of the Heaviside step perturbation of its amplitude implies that
O(θ) = sin θ is the observable that must be studied with −δA as its conjugate variable. Hence, we compute
the correlation function C(t), the corrective term B(t) (with ∂θO(θ) = cos θ and the experimental curve
v0(θ) shown in Fig. 1(b)) and the integrated response χ(t) for this observable as a function of the time
lag t.

The determination of C(t) and B(t) is straightforward according to Eqs. (4) and Eqs. (6). The sta-
tionarity of the system allows to perform an average over the time origin in addition to the ensemble
average 〈...〉0 over the 200 different time series devoted to this purpose, which increases enormously the
statistics. The dependence of the correlation term C(0) − C(t) and the term B(t) on the time lag t is
shown in Fig. 2(a) in dotted-dashed green and blue dashed lines, respectively.

On the other hand, some subtleties must be taken into account for the determination of χ in the
current non-equilibrium situation. From the linear response function defined in Eq. (5), the integrated
response χ is given by

χ(t) =
〈O(θ(t))〉δA − 〈O(θ(t))〉0

−δA . (8)
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Fig. 3. Example of trajectories used to compute the intergrated response. For a given perturbed trajectory (thick
red line) a set of unperturbed trajectories whose initial value is equal to that of the perturbed one at t = 0 (thin
lines) is found.

In Eq. (8) the value t = 0 corresponds to instant when the perturbation of the potential amplitude δA is
switched on. The numerator represents the mean deviation of the perturbed trajectories with respect to
the unperturbed ones and its expression is exact only for a continuous sample of trajectories. However,
due to the finite number of trajectories available in practice, some care is needed in order to compute it
correctly. For a given perturbed trajectory θ(t)δA we look for an unperturbed one θ(t) among the 200
time series {θ(t)} starting at a time t∗ such that O(θ(t∗)) = O(θ(0)δA). In order to improve the statistics,
for each θ(t)δA among the 500 perturbed time series {θ(t)}δA we seek as many unperturbed trajectories
as possible satisfying the initial condition for t∗, as shown in Fig. 3. The unperturbed trajectories found
in this way allow us to define a subensemble over which the average 〈O(θ(t))〉0 in Eq. (8) is computed at
a given t. The average 〈O(θ(t))〉δA is simply computed over the 500 perturbed time series. In Fig. 2(a)
we show in thick dashed red line the dependence of the integrated response on t.

The comparison between the different terms needed to verify Eq. (7) is shown in Fig. 2(a), for the
time lag interval 0 < t < 3.5 s where the linear response regime is valid. As expected, the usual FD
relation (1) is strongly violated in this NESS with the correlation term C(0) − C(t) being one order of
magnitude larger than the response term kBTχ(t). However, when we take into account the term B(t)
associated to the probability current as a correction of C(0) − C(t), the term C(0) − C(t) −B(t) shown
in solid black line in Fig. 2(a), becomes equal to kBTχ(t). In Fig. 2(b) we show an expanded view of
the of the curves C(0) − C(t) − B(t) and kBTχ(t). We observe that within experimental accuracy, the
agreement between both terms is quite good, verifying the integral form of the MFD relation given by
Eq. (7). The error bars of the integrated response curve at each time lag t are obtained from the standard
deviation of the subensemble of unperturbed trajectories found for each perturbed trajectory, like the
ones shown in thin solid lines in Fig. 3. As shown in [10], a direct interpretation of the verification of
this MFDT for the fluctuations of the angular position of the silica particle in NESS can be rendered in
the Lagrangian frame moving with the local mean velocity shown in Fig. 1(b) along the toroidal trap. In
this frame, the time-independent observable O(θ) = sin θ is replaced by an explicitly time-dependent one
O(t, θ) evolving according to an advection equation with velocity field v0(θ) for which the MFD relation
reads

∂sC(t, s) = kBTR(t, s). (9)
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Thus, an FD relation similar in form to the equilibrium one (Eq. (1)), can be restored in the corresponding
Lagrangian frame of this experiemental system.

4 Conclusion

We have verified experimentally a modified fluctuation-dissipation relation describing the dyanmics
of a system with one degree of freedom in NESS, namely a Brownian particle moving in a toroidal
optical optical trap. We point out that the experimental results reported here represent an alternative
approach of a fluctuation-dissipation relation extended to non-equilibrium stationary situations from the
one described in [9] for velocity fluctuations relative to the local mean velocity for a similar experimental
system. The approach followed in our work relies in an observable related to the particle position and
besides quantifying the extent of the violation of the usual FDT by means of the term B, a transparent
interpretation of the violation is possible.
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