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Résumé. Dans cet article, nous présentons des résultats analytiques rigoureux pour un modèle d’oscillateurs
couplés inspiré d’expériences récentes sur des colonies de circuits géniques en interaction. Tout en ayant une
phénoménologie propre, le modèle partage certaines caractéristiques des modèles classiques d’oscillateurs couplés,
tels qu’employés en Neuroscience. Dans un article précédent, nous avons prouvé l’existence d’une transition nette
avec le paramètre de couplage, entre un régime où toutes les distributions d’agrégats peuvent être atteintes dans
le temps, à une phase où seules les distributions comportant un groupe de taille extensive, proportionnelle à la
taille de la population, persistent. Cependant, le nombre maximal d’agrégats asymptotiques reste extensif dans
tous les cas. Or les simulations numériques révèlent que dans le régime fortement couplé, les trajectoires issues de
conditions initiales aléatoires convergent typiquement vers des distributions à faible nombre d’agrégats. Ici, nous
présentons une série de résultats sur ces trajectoires, notamment une probabilité positive d’obtenir un nombre
d’agrégats intensif à la limite thermodynamique, pourvu que le couplage soit suffisamment fort.

Abstract. In this paper, we present mathematical results on a piecewise affine model of coupled oscillators
inspired by recent experiments on synchronization in colonies of bacteria-embedded genetic circuits. The model
phenomenology is similar to that of systems of pulse-coupled oscillators with global inhibitory interaction. In [5],
we proved the existence of a phase transition with the coupling strength, from a regime of arbitrary asymptotic
cluster sizes, to a strongly clustered regime where every asymptotic distribution contains an extensive cluster. We
also analytically computed the maximal number Kmax of asymptotic clusters and showed that, while it decreases
in the strong coupling regime, this number stays extensive for every coupling parameter. Here, we report on
manifestations of this phase transition in the dynamics of uniformly drawn random initial conditions. The most
significant feature is that, when the coupling strength is sufficiently large, with positive probability, the number
of clusters remains intensive in the thermodynamic limit.

1 Introduction

Understanding changes in behavior of interacting oscillatory systems as their parameters vary is
pivotal for the comprehension of population dynamics in Biology and Ecology. An archetypical example
is the collective synchronization that progressively takes place in the (heterogeneous) Kuramoto model as
the coupling strength increases beyond a positive threshold [1,10]. This mechanism has been repeatedly
invoked to elucidate observed behaviors in a variety of concrete systems, including the flashing of fireflies
populations and the functioning of pacemaker cell networks in the heart and in the brain [8,11].

Beside the Kuramoto model, proofs of synchrony (at any coupling strength), have been given for
assemblies of pulse-coupled oscillators with excitatory couplings [2,7], not only in the case of homogeneous
systems where all individual characteristics are identical, but also for certain heterogeneous models with
variable individual frequency, threshold and/or coupling parameters [9]. For inhibitory couplings, the
phenomenology is richer and a multi-stable clustering is commonly observed [4]. However, the analysis is
more involved in this case and proofs are scarce, especially when the population size N exceeds 2 units.

Recently, we introduced a discontinuous piecewise affine model of coupled oscillators with repressive
interactions [5] inspired by experiments on synchronization in colonies of bacteria-embedded genetic
circuits [3]. This simple model mimics the degrade-and-fire (DF) behaviors generated by the associated
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nonlinear delay-differential equations [6]. Up to a change of repressor concentration x 7→ 1−x, it is similar
to the well-known integrate-and-fire (IF) model in Neuroscience. Its oscillations are of sawtooth type with
a slow degradation phase followed by a fast production phase (firing) and resetting to a normalized value.
Assuming no delay for a simpler analysis, the main difference with IF models is that firing is triggered by
a repressor field (that involves the entire population state), rather than only by the local concentration.

The model (detailed at the beginning of section 2 below) exhibits a similar phenomenology as in
systems of pulse-coupled oscillators with inhibitory interaction (excepted that for N = 2, it has a unique
globally stable periodic trajectory with positive phase shift) and is amenable to rigorous analytical study
for populations of any size N ∈ N. In [5], we proved the existence of critical coupling strength ǫc up to
which all cluster distributions can be reached asymptotically. Beyond that threshold, another regime takes
place where only distributions containing at least one group of extensive size ∼ ρN perdure. Moreover,
we analytically computed the maximal number Kmax of asymptotic groups, a number that turned out to
be extensive for every coupling intensity. Despite that extensive maximal number of clusters, numerical
simulations of large populations indicate that, starting from totally unclustered initial configurations
(such that xi 6= xj when i 6= j), the number of asymptotic clusters is typically much smaller than Kmax

when ǫ > 2 (while it appears that Kmax = N when ǫ < 2), see Figure 1.

Figure 1. Number of clusters in the asymptotic regime for 1000 coupled oscillators with η = 0.01 and 1000
different random initial conditions for each ǫη. The solid blue line represents the maximal numberKmax analytically
computed in ref. [5]. It illustrates that Kmax = N for ǫη < 2η and Kmax decreases beyond this threshold. The
solid red line represents the number of clusters obtained for totally unclustered initial conditions. Clearly, this
number is much smaller than Kmax when ǫη increases beyond 2η.

This paper presents mathematically results that confirm these evidences. We address the dynamics of
uniformly drawn random initial conditions across the coupling range. In brief terms, our results show that,
as ǫ crosses 2, immediate extensive clustering takes place almost surely in the thermodynamic limit, a
drastic change from a regime where the first firing(s) typically occurred without clustering. Furthermore,
when the coupling is increased further, the clusters formed during the first firing become so large that
the total number of clusters becomes intensive with, again, positive probability in the limit of large
populations.

2 Dynamics of degrade-and-fire oscillators

The model assumes that the time-dependent repressor protein concentration xi(t) ∈ [0, 1] of the ith
DF oscillator, i ∈ {1, · · · , N}, linearly degrades with unit rate in time, i.e. ẋi = −1, or remains constant
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if it has reached 0. When the locally averaged concentration χi(t) defined by

χi(t) = (1− ǫη)xi(t) +
ǫη

N

N∑

j=1

xj(t),

(where 0 < ǫ < 1/η is the coupling strength parameter) reaches the (small) threshold η > 0, the ith
oscillator fires, and its concentration is reset to 1, i.e. xi(t+) = 1.

According to these evolution rules, in every trajectory {xi(t)}Ni=1, all oscillators must fire indefinitely
for any initial configuration (xi(0) = xi for i = 1, · · · , N) such that χi(0) > η for i = 1, · · · , N , all
concentrations decay towards 0 with time (those that have reached 0 remain at zero) and so do all χi(t).
Thus the oscillator with the lowest xi(t) (possibly, more than one if several oscillators have identical
concentrations xi(t)) eventually fires when the corresponding χi(t) reaches η. After that, the oscillator
j with new lowest xj has to fire when its χj(t) reaches η, and so on. It is also clear that if any two
oscillators in a population are in sync at certain time t∗, i.e. xi(t∗) = xj(t∗), they will remain in sync
for all t > t∗. What is not obvious however, is under which conditions oscillators that are initially out of
sync will synchronize in the course of the dynamics, and what the number of asymptotic clusters is.

To answer these questions, we need some technical considerations. By grouping oscillators with iden-
tical value of xi(t) into one cluster, the population configuration can be depicted via

{(nk, xk)(t)}Kk=1

where nk(t) ∈ {1, · · · , N} denotes the size of group k and

K∑

k=1

nk(t) = N (K ≤ N is the total number of groups),

and xk(t) is the corresponding repressor concentration. In this viewpoint, cluster sizes nk remain unaf-
fected in time unless two clusters k and k′ fire together.

The dynamics can be described by the discrete time map acting on configuration vectors after firings.
Notice that any ordering in {(nk, xk)} is irrelevant here thanks to the permutation symmetry. Accordingly,
we choose to consider ordered values of xk when defining the firing map.
Thus we assume that

0 < x1 < x2 < · · · < xK−1 < xK = 1

for the initial configuration and we include cyclic permutations of indices in the action of the firing map.
For instance, in absence of clustering, the map writes

{(nk, xk)(0)}Kk=1 7→ {(nk, xk)(tf+)}Kk=1

where tf is the firing time and the updated configuration reads

(nk, xk)(tf+) =

{
(nk+1(0), xk+1(0)− tf ) if k = 1, · · · ,K − 1

(n1, 1) if k = K ,

which is also suitably ordered, i.e. we have

0 < x1(tf+) < x2(tf+) < · · · < xK−1(tf+) < xK(tf+) = 1 .

Our aim is to analyze the fate of trajectories issued from random, totally unclustered, initial distribu-
tions (such that nk = 1 for k = 1, · · · , N). In this case, it suffices to specify the initial concentrations xk
(bearing in mind that xN = 1). For simplicity, we assume that the ordered configuration x = {xk}N−1

k=1

(which is identified with {(1, xk)}Nk=1) is randomly chosen with uniform probability distribution
in

TN := {x := (x1, · · · , xN−1) : 0 < x1 < x2 < · · · < xN−1 < 1 (= xN )} .
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More precisely, there exists a normalizing constant αN > 0 such that the probability measure Prob(A) =
αNLebN−1(A) for every measurable subset A ⊂ TN , where LebN−1 is the (N − 1)-dimensional Lebesgue
measure of A. A simple reasoning shows that αN must be must equal to (N − 1)!. In other words, we
consider the random process defined in TN that consists in iterating the firing map for random initial
configurations.

With these technical considerations provided, we can describe (no-)clustering properties at successive
firings. Given an initial condition in TN , let nℓ be the size of the ℓth firing cluster (ℓ ∈ N). Lemma 1 in
[5] implies that no clustering occurs (viz. nℓ = 1 for all ℓ) for ǫ up to 1.
To some extent, this threshold ǫ = 1 appears to be sharp because [5] also showed that, when ǫ > 1 and N
is sufficiently large, there exists an open set of x ∈ TN for which n1 > 1. Notwithstanding this evidence, for
the random process here, firing before clustering (i.e. n1 = 1) persists almost surely in the thermodynamic
limit, while ǫ remains smaller than 2. This is formally claimed in Proposition 1 below. Furthermore, the
statistical behavior remarkably changes past ǫ = 2, as extensive clustering emerges, again with probability
1 in the limit of large N . Throughout the paper, P denotes the probability distribution of a random
variable.

Proposition 1 (i) lim
N→∞

P(n1 = 1) = 1 for every ǫ < 2.

(ii) For every ǫ > 2, there exist ρ1 ∈ (0, 1) such that lim
N→∞

P(n1 ≥ ⌈ρ1N⌉) = 1 where ⌈·⌉ stands for the

ceiling function. There also exists ρ2 ∈ (0, 1) such that lim
N→∞

P(n2 ≥ ⌈ρ2N⌉) = 1.

Of note, no statement here depends on the threshold parameter η. We only need to choose η small enough
in order to ensure that the inequality ǫ > 1/η holds in every statement ; for instance η ≤ 1/20 suffices.
For ǫ > 2, the maximum number of clusters Kmax is realized by an (asymptotically) stable configuration
with a single group of extensive size N − Kmax + 1 (and all other groups having a single individual,
nk = 1) [5]. Proposition 1 implies that the associated basin of attraction in TN has vanishing measure in
the thermodynamic limit.

The critical value ǫ = 2 is the maximum coupling strength up to which the firing map has an
asymptotically stable fixed point x(N) ∈ TN for all N > 2. When ǫ < 2, x(N) attracts the orbit of every
configuration in TN that never clusters (i.e. such that Kℓ = N for all ℓ) and these vectors constitute a
set of positive measure Prob for every N [5]. We do not know if this measure remains positive in the
thermodynamics limit. Nonetheless, any number of firings without clustering can be realized with positive
probability, namely

Proposition 2 For every ǫ < 2 and every L ∈ N, there exists pL ∈ (0, 1) such that

lim inf
N→∞

P(nℓ = 1 for ℓ = 1, · · · , L) > pL.

For ǫ > 2, extensive clustering at firings does not only apply to the first two firings. It extends to any
firing as the next statement claims and completes statement (ii) of Proposition 1.

Proposition 3 For every ǫ > 2 and L ∈ N, there exists ρℓ > 0 such that

lim
N→∞

Prob



either ∃L′ ≤ L :

L′∑

ℓ=1

nℓ = N or nL ≥ ⌈ρLN⌉



 = 1.

In other terms, with large probability, extensive clustering occurs for an arbitrary number of successive
firings unless an intensive number of cluster results. This suggests that the asymptotic number of clusters
should typically be much smaller than Kmax, as is observed in the numerics.

Finally, for sufficiently large coupling, one can make sure that the first alternative in Proposition 3
occurs with positive probability, that is positive probability of an intensive asymptotic number of clusters.

Proposition 4 There exists ǫc > 2, such that for every ǫ > ǫc we have

lim
N→∞

P(n1 + n2 = N) > 0.
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We do not know if intensive asymptotic number of clusters happens almost surely in TN and/or for every
ǫ > 2. In this regime, trajectories from initial configurations in a sufficiently small neighborhood of the
equi-distributed configuration xk = k/N do asymptotically lead to intensive number of clusters. However,
this set has vanishing measure in the thermodynamic limit.
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