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2 Master equations in the presence of advection

2.1 Settings

We consider a set of particles {Ai}1≤i≤N(t) whose positions Xi obey the equations

dXi

dt
= v(Xi, t), (2.1)

where v is a prescribed d-dimensional differentiable velocity field with given

isotropic, stationary, and homogeneous statistics. The velocity field v is assumed

to have a finite correlation time and might be compressible with compressibility

℘=
(∇ ·v)2

tr
�
∇vT ∇v

� , (2.2)

where the over line designates the average with respect to the velocity field re-

alizations, and ℘∈ [0 : 1]. The extremal values ℘= 0 and ℘= 1 correspond to

incompressible and purely potential velocity fields, respectively. Whenever℘> 0,

the dynamical system defined by (2.1) is dissipative. Also, to maintain sufficiently

generic settings, the dynamics is assumed ergodic and chaotic. Typically, when

the flow is defined on a compact set, the trajectories generated by (2.1) will con-

centrate on a dynamically evolving strange attractor, while in the incompressible

limit they remain uniformly distributed (see, e.g., [12] for more details on particle

transport in compressible and incompressible flows). For the sake of simplicity,

in this paper we will focus on the dynamics of tracers given by (2.1). However,

the results can be straightforwardly extended to a general dynamics given by the

Newton equation Ẍ = F(X, Ẋ, t) as that ruling, for instance, the evolution of iner-

tial particles [22].

The dynamics (2.1) is supplemented by binary reactions between the particles.

When |Xi −X j|< a the particles labeled i and j might react and annihilate (or be-

come inert). This happens with a rate µ . As a consequence, the number of particles

N(t) in the domain will decrease from its initial value N(0) = N0 in the course of

time. We suppose that the radius of interaction a is smaller than the scale at which

v varies. For example, in turbulent flows, this corresponds to assuming that a is

smaller than the Kolmogorov length scale �K. Moreover, in writing (2.1) we have

neglected particle diffusion. This is justified whenever the interaction distance a is

larger than the Batchelor length scale �B = �K/
√

Sc, where Sc = ν/κ designates

the Schmidt number — that is the ratio between the fluid kinematic viscosity ν
and the particle diffusivity κ . For applications, our settings thus reduce to very

large values of the Schmidt number. We notice that the Schmidt number can be of

the order of thousands or higher in organic mixtures, biological fluids and gener-

ically for particulate matter. Estimates based on Stokes–Einstein relation lead for

a micro-meter sized spherical particle Sc ≈ 1000 in air and 10
6

in water.

Before discussing the master equations which describe the system, it is worth

underlining that our settings involve different sources of stochasticity. First, the

dynamics (2.1) has to be supplemented by initial conditions on particle positions

that we choose randomly. A second source of randomness comes from the intrin-

sic stochasticity of the reaction process. Finally, the fluid flow is stochastic with
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can be used to address such issues. For that, we neglect diffusion and focus on

particles transported by generic compressible flows. Also, we focus on the anni-

hilation reaction A+A→∅ because we expect that this simple model will capture

the essence of finite-number effects in advection-reaction systems.

It is clear that, at long times, the particle number density decreases, so that

this long-term asymptotics is very likely affected by finite-number effects. Kinetic

approaches using (1.1) predict that, ultimately, the average number of particles

decays algebraically as t−1
[5]. This behavior, which occurs at times much longer

than the fluid velocity correlation time, can be explained in terms of an effective

eddy diffusion. The flow compressibility might decrease the effective diffusiv-

ity [31], but the latter remains anyway positive [17]. Hence, at long times, the

spatial fluctuations of the concentration are smoothed out and a closed equation

can be written for the spatial average of ρ . Here, we find that finite-number effects

enhance the long-time decay of the average number of particles. For that we con-

sider discrete particles that are tracers of the compressible fluid flow and that anni-

hilate with a rate µ when they are separated by less than an interaction distance a.

We show that the average number of particles does not decrease algebraically but

rather exponentially as exp(−γ t). This law pertains to the statistics of the relative

motion between two reactants and the exponential decay rate γ depends on both

the microscopic rate µ and the flow statistical properties in a non-trivial manner.

The main result of this work is the introduction of a novel Lagrangian approach

in terms of non-reacting particle trajectories. We exploit these ideas to express γ
using a large-deviation principle for the time that two tracers spend at a distance

below the radius of interaction a.

The paper is organized as follows. Section 2 contains basic definitions and set

the general framework of this work. The n-point number-density field is intro-

duced and is shown to obey a hierarchy of transport equations. When integrated

over space, these fields correspond to the factorial moments of the number of par-

ticles that are present in the system. We then briefly discuss the zero-dimensional

case and its relationship with standard studies of finite-number effects in well-

mixed settings. In section 3, the hierarchy for the n-point number-density is solved

by using a Lagrangian approach that consists in following the flow characteristics.

At long times the particle number moments are shown to decay exponentially with

a rate γ that does not depend on their order. An analytic expression for γ is given

in terms of the Lagrangian statistics of (non-reacting) tracer trajectories. In section

4 we focus on the case of two particles. The exponential decay rate is then related

to the time spent by the pair at a distance less than the interaction radius and is

expressed in terms of the large fluctuations of the latter. Asymptotic arguments

are then developed to relate the decay rate γ to the microscopic rate µ . Section 5

contains an application to very dilute suspensions in smooth compressible Gaus-

sian delta-correlated-in-time flows (belonging to the so-called Kraichnan ensem-
ble; see, e.g., [12]). Finally, section 6 presents some concluding remarks and open

questions.

µ

On considère un ensemble de N(t) particules t.q.
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Fig. 5.3 (Color online) PDF of the hitting time normalized with the average hitting time Thit for
℘= 0.1 for several reaction distances a, as labeled. Notice that for a/L ≤ 5 · 10−3 all curves
collaspe onto the exponential PDF (in blue), deviations from pure exponential PDF can be seen
only for larger values of a/L (in red), which however possess a clean exponential tail. Inset: nor-
malized average hitting time λThit vs a/L (symbols) comparared to the inverse of the probability
P<

2 (a). Notice that for small-enough distances Thit ∝ 1/P<
2 (a)∼ (a/L)−D2(℘).
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Fig. 5.4 (A) γ vs µ for ℘= 0.1 and a/L = 5 ·10−3 the solid lines shows the small and large µ
asymptotics, respectively. (B) γ/µ vs µ the solid line displays the central-limit theorem predic-
tion (4.10), which is made more clear in the inset by eliminating the constant term.

distribution of nrea is Poissonian, P(nrea, t) = Knrea exp(−K)/nrea!, with mean K =
t/Thit. Let us denote by αn the fraction of T n

esc during which the particle pair is
within a distance a. We can write

� t
0 θ(a−R(s))ds = ∑nrea

n=0 αnT n
esc so that

e−γt = e−µ
� t

0 θ(a−R(s)) = ∑
nrea≥0

P(nrea, t)
�
e−µ ∑nrea

n=0 αnT n
esc
���nrea

�

= ∑
nrea≥0

P(nrea, t) [e−µαTesc ]
nrea

= ∑
nrea≥0

P(nrea, t)β nrea = e−(1−β )K = e
−t 1−β

Thit .

In the above derivation we made essentially no approximation but the statistical
independence of the time subintervals. This assumption is justified by the memory

Approximation naïve 
pour le taux effectif:

taux 
eff.

taux 
microscopique= x

p(Θ) ∼ e−tH(Θ)

γ = inf
Θ≥0

[µΘ+H(Θ)]

On trouve: �N(t)� ∼ e−γt �N(t)� ∼ 1

t
au lieu de (champ moyen)

prob. d’être 
près

Principe des grandes déviations

γnaive µ P<
2 (a)×=

: fraction du temps que deux 
particules passent à une 
distance plus petite quea

Θ


