Kinetic description

• VLASOV equation: dynamics of the distribution function $f(\mathbf{x}, \mathbf{v}, t)$ of particles in phase space

$$\frac{\partial f}{\partial t} = -\mathbf{v} \cdot \nabla f - \frac{q}{m} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \frac{\partial f}{\partial \mathbf{v}} = \{f, \mathcal{H}\}$$

along with MAXWELL's equations for $\mathbf{E}(\mathbf{x},t)$ and $\mathbf{B}(\mathbf{x},t)$

• Hamiltonian structure: alternating bracket $\{\cdot,\cdot\}$ which is bilinear and satisfies the JACOBI identity

$${F, {G, H}} + {H, {F, G}} + {G, {H, F}} = 0$$

Aix*Marseille

Fluid description

- dynamics in configurations space: x instead of (x, v)
- infinite number of field variables (density, velocity, pressure, ...) ⇒ need to close these equations

Objective: obtain closed fluid models that preserve the Hamiltonian structure of the kinetic equations

Framework

- 1D VLASOV-POISSON: $\partial_t f = -v \partial_x f \Phi' \partial_v f$ and $\Phi'' = \int f \, dv 1$
- 3-fields model: density $\rho(x,t)$, velocity u(x,t) and pressure P(x,t)

Result

our model:

$$\begin{split} \partial_t \rho &= -\partial_x (\rho u) \\ \partial_t u &= -u \partial_x u - \frac{1}{\rho} \partial_x P + \Phi' \\ \partial_t P &= -u \partial_x P - 3P \partial_x u - 2\partial_x q (P/\rho^3) \end{split}$$

- discussions of invariants/conserved quantities
- application to the drift-kinetic equation
 - ⇒ Leads to the water-bag closure