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Random neural networks (RNN’s) are a popular choice to approximate
biologically realistic recurrent neural networks, where the synaptic neural
links are Gaussian distributed1–4. Despite the fact that connectivity inside
the brain cannot be assumed to be fully random5;6, there is experimental ev-
idence supporting the assumption that some parts of the brain are described
by a stochastic architecture7–9. Although interactions inside RNN’s are gov-
erned by random connections, these networks can still achieve highly coher-
ent collective dynamics10;11. Among others, they exhibit phase synchronized
dynamics which have an important role in biological memory processes, neu-
ral communication and plasticity12. Therefore phase synchronization plays
a crucial role in biological neural networks information processing.

Spatiotemporal patterns of self-organization can be found in homoge-
neous13 and heterogeneous14;15 artificial neural networks. Depending on
system parameters, such spatiotemporal patterns include global synchro-
nization or clustering. This suggests that such cooperative behaviour is
potentially an universal phenomenon found in neural networks. The compu-
tational capabilities of RNN’s have been widely studied in the machine learn-
ing community. For machine learning purposes the initial state of the neural
network can be set to stable16 or transitory (regular-to-chaotic) dynamics17.

Hence, regardless of how regular the RNN’s autonomous dynamical state is,
it is always capable to process information as long as input information and
memory are preserved. Consequently, how global dynamical properties are
harnessed by the RNN for information processing has to be considered.

In this work, we show a RNN designed with a periodic nonlinear function
with several extrema. For higher values of the bifurcation parameter µ the
network is able to maintain highly regular spatiotemporal patterns, despite
chaotic behavior of the individual neurons. We found that some of the most
synchronous spatiotemporal patterns are related with non-chaotic responses
of the network’s neurons, among with we can find steady states and peri-
odic solutions. Such regions offer a lower degree of complexity, which can
be harnessed for information processing. For machine learning purposes, we
have introduced a xy-system capable to emulate the temporal evolution of
a given chaotic system, i.e. to predict the future time-steps of the Mackey
Glass chaotic system18.

The way how these networks memorize information is addressed by three
different methods, which can be interpreted as complexity indices for ma-
chine learning based on dynamical systems. At first, we studied the spa-
tial synchronization of the network, where the highly synchronous regular
regimes were related to good prediction performances. However, spatially
synchronized chaotic responses were not capable to keep the important fea-
tures of the input dynamic, resulting in a low prediction performance. Max-
imal Lyapunov exponents and memory capacity were found to behave in-
versely proportional respect to each other. Memory capacity therefore de-
creases when λmax increases. As the complexity of the RNN increases with
µ, the network is less efficient by memorizing the input information.
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