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Context: Experimental evidence, from both satellite in situ measurements
and numerical simulations, of the existence of non-Maxwellian (anisotropic
in temperature) particle distributions in low collisionality plasmas
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The collision operator in the transport (Vlasov) equation in plasmas vanishes at high

temperature and small density — The convergence of the distrubution function of high
temperature and of diluited plasmas to a Maxwellian state is not granted.
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* However he occurrence of non-groytropic particle distributions that are anisotropic in
temperature/pressure is observed directly by satellites in the solar wind and magnetosphere,
and indirectly by the signature of anisotropy-driven instabilities in space plasmas.

* We look for a dynamical anisotropisation mechanism by inspecting the full pressure tensor
equation, obtained by taking the second order velocity moment of Vlasov equation.
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Approach and results

* The gradient tensor apppearing in the full pressure tensor equation (second order moment of
Vlasov equation) can induce anisotropic deformation on the pressure tensor
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Approach and results

* The gradient tensor apppearing in the full pressure tensor equation (second order moment of
Vlasov equation) can induce anisotropic deformation on the pressure tensor

* In a 2D geometry with @ x B = 0 the gyrotropic
and non-gyrotropic anisotropies evolve as:
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* This shear-induced anisotropisation mechanism is relevant to any low-collision/non-viscous
fluids and can help understand results of Vlasov simulations of Alfvenic turbulence

Figures from [Servidio et al., PRL 2012]
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Figures fjrom [Franci et al., AIP Conf. Proc. 2016]
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