

Faraday waves with inhomogenous localized injection in a quasi-unidimensional system

Héctor Urra^{1,2}, Saliya Coulibaly³, Mónica A. García-Ñustes², Leonardo Gordillo⁴

¹ Sorbonne Université, Laboratoire PMMH – ESPCI Paris, 7 guai Saint Bernard, 75005, Paris, France

² Institute of Physics, Pontifical Catholic University of Valparaíso, Casilla 4050, Valparaíso, Chile

³ Laboratoire de Physique des Lasers, Atomes et Molécules, CNRS UMR 8523, Université des Sciences er Technologies de Lille-59655. Villeneuve d'ascq Cedex, France.

⁴ Departamento de Física, Universidad de Santiago de Chile, Casilla 307-2, Santiago

- The normal modes that appear in the cell have a wavelength, which is found to increase as the pattern moves away from its central axis of symmetry (half the cell).
- The validity of the PDNLS equation is corroborated as a model to study the slow dynamics of a pattern in a fluid system contained in a uniform container with localized injection.
- Is demonstrated that the width or variance of the measured pattern σ_P a of the injection area measured σ_{IM} following a law of power of the form, $f(x) = ax^b$ when

$$a = 8.3 \pm 4.865 \quad [mm]^{1/2} \text{ y } b = 0.5 \pm 0.257.$$