Forced three-wave interactions of capillary-gravity surface waves.

MSC: Laboratoire Matière et Systèmes Complexes
UMR 7057 CNRS
Université Paris Diderot

Michael Berhanu (CR CNRS)

with

Annette Cazaubiel (Phd Student)
Florence Haudin
(Former Postdoctoral Researcher)
& Eric Falcon (DR CNRS)

Acknowledgments:
Luc Deike (Assistant Professor, Princeton USA)
Resonant three-wave interactions

- Generation of a daughter 3 wave from the interaction of two mother waves 1 and 2 by the three wave resonant mechanism.

Resonant conditions:

\[k_1 + k_2 = k_3 \]

\[\omega_1(k_1) + \omega_2(k_2) = \omega_3(k_3) \]

with \(\omega(k) = \sqrt{gk + \left(\frac{\gamma}{\rho}\right)k^3} \)

\[\cos(\alpha_{12r}) = \frac{k_3^2 - (k_1^2 + k_2^2)}{2k_1k_2} \]

Selection of a resonant angle

\(F_1 = 15 \text{ Hz} \) et \(F_2 = 18 \text{ Hz} \) \(\Rightarrow F_3 = 33 \text{ Hz} \) and \(\alpha_{12r} = 54^\circ \)

- Now, when \(\alpha \neq \alpha_{12r} \) we report generation of a daughter wave, verifying the resonant conditions, but not the dispersion relation.
Interpretation as a forced three-wave interaction.

- Weakly non-linear model, describing the forcing of the wave 3 (f_3, k_3) by the product of the two mother waves 1 and 2.

Resonance when $\alpha = \alpha_{12r}$: forcing matches the dispersion relation.

Like for a forced oscillator, the bandwidth of the resonance is increased by the dissipation.

- When $\alpha \neq \alpha_{12r}$, the daughter wave is spatially modulated. Strong analogy with the case of non-resonant interactions.

- Significant dissipation for capillary waves suggests that forced and non resonant three-wave interactions should be taken into account in the theoretical description of capillary wave turbulence.