Dynamics of a reactive spherical particle falling in a linearly stratified layer

Ludovic Huguet¹ & Michael Le Bars¹

CNRS, Aix Marseille Univ, Centrale Marseille, IRPHE, Marseille (France) huguet@irphe.univ-mrs.fr

Rocky planets such as Earth, Mercury or Ganymede have a liquid iron core which may be totally or partly stably stratified [1,2]. The sedimentation of iron particles crystallizing due to the secular cooling of the planet [3] or the precipitation of oxides [4] implies complex dynamic features involving a turbulent wake, the generation of internal waves, collective behaviour of the solid crystals, etc. It also involves reactive solid particles which may crystallize/melt.

Beyond the geophysical application, this problem is, therefore, related to several current problems in fluid dynamics, which we address with the help of a laboratory-scale experiment. The behaviour of a particle falling in a stratified layer has already been studied for different regimes of small Reynolds or Froude numbers [5,6]. However, the influence of a reactive particle on a stratified medium has been unexplored, especially for regimes of interest for geophysical applications (large Reynolds and Froude numbers). In a stratified environment, the fall velocity is reduced due to the higher drag coefficient. During its fall, a particle drags a less dense liquid mixed with the product of the melting/dissolution. Then, the drag coefficient depends on the mixing in the wake, and on the melting/dissolution rate.

I am conducting experiments in a large water tank with salinity stratification where an icy, salty sphere is released from the top. I use two cameras and particle image velocimetry (PIV) to track the fall of the particle and the dynamics of the surrounding environment. I examine the velocity and the rate of dissolution of the spherical particle in comparison to a theoretical model. I also characterize the influence on its surrounding environment - generation of internal waves, the quantity of energy dissipated, and the mixing of the stratified layer. All these quantities are non-linearly coupled, leading to complex and interesting dynamics.

Références

- 1. Gomi, H., Ohta, K., Hirose, K., Labrosse, S., Caracas, R., Verstraete, M. J., Hernlund, J. W., The high conductivity of iron and thermal evolution of the Earth's core, *Physics of the Earth and Planetary Interiors*, **224** (1), 88-103, (2013).
- 2. RÜCKRIEMEN, T., BREUER, D., SPOHN, T., The Fe snow regime in Ganymede's core: A deep-seated dynamo below a stable snow zone, *Journal of Geophysical Research*, **120**, 1095–1118, (2015).
- 3. Hauck, S. A., Aurnou, J. M., Dombard, A. J., Sulfur's impact on core evolution and magnetic field generation on Ganymede, *Journal of Geophysical Research*, **111**, (E9), 2156-2202, (2006).
- 4. Badro, J., Siebert, J., Nimmo, F., An early geodynamo driven by exsolution of mantle components from Earth's core, *Nature*, **536**, (7616), 326-328, (2016).
- MEHADDI, R., CANDELIER, F., MEHLIG, B. Inertial drag on a sphere settling in a stratified fluid, Journal of Fluid Mechanics, 855, 1074-1087, (2016).
- 6. YICK, K. YEUNG, TORRES, C. R., PEACOCK, T., STOCKER, R., Enhanced drag of a sphere settling in a stratified fluid at small Reynolds numbers, *Journal of Fluid Mechanics*, **632**, 46-68, (2009).