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Synchronizing systems

This work shows a new approach to the study of dynamic systems that act on
a graph G = (V,E) and that synchronize. As a first example, we take a simple
linear system, known as the Laplacian associated with the adjacency matrix of
G the ODE on R|V |

d

dt
x = LG(x), (1)

where |V | = n and LG is the Laplacian matrix of the adjacency matrix of G.
Which can also be written as:

d

dt
xk =

∑
j∈V(k)

(xj − xk), (2)

where xk are the coordinates of the vector x and V(k) denotes the set of closest
neighbors of vertex k.

This system is such that the diagonal

∆ = {x ∈ Rn : xi = xj ∀ 0 ≤ i ≤ j ≤ n} (3)

is a global attractor, that is, such that x(t) → ∆ as t → ∞ for all initial
condition x ∈ Rn.

The second system that we analyze is the nonlinear system, known as the
Kuramoto Model which is the ODE on R|V |

d

dt
ϕk = ωk + σ

∑
j∈V(k)

sin(ϕj − ϕk), (4)

where V(k) denotes the set of closest neighbors of node k, the natural fre-
quencies are distributed according to some probability density ω 7→ g(ω) and
σ is the coupling strength with a suitable scale, so that the model has a
good behavior when |V | = n → ∞. The conditions under which we observe
synchronization behaviors are well known.

Paths construction

For a fix a threshold ε > 0, the ε-synchronized subnetwork Gx corresponding
to configuration x ∈ Rn is defined by the adjacency matrix

Ax(i, j) = A(i, j)χ(x){|xi−xj |≤ε}. (5)

Otherwise said, the ε-synchronized subnetwork Gx is composed of the edges
(i, j) of G for which |xi − xj | ≤ ε. By hypothesis Gx(t) → G as t → ∞, and
since there is a finite number of subnetworks, and we are assuming global syn-
chronization, then for each initial condition x ∈ Rn there exists a finite sequence
of switching times t0 = 0 < t1 < t2 < · · · < tN(x) and corresponding sequence
of ε-synchronized subnetworks Gx := (Gx(0), Gx(t1), . . . , Gx(tN(x))) such that

Gx(ti) 6= Gx(ti+1), for each 0 ≤ i < N(x), and

Gx(t) = Gx(ti) with i = max{0 ≤ j ≤ N(x) : t ≥ tj}.

Example

We consider the Laplacian on K5 for an initial condition x0.

Analysis types:

• Ratio of initial conditions that synchronize.
In the following figure we show a comparison of the proportion of ini-
tial conditions that synchronize in the Kuramoto system in each type of
graph that we analyze, which depends on the dimension.

The following results that we will show are for initial conditions that,
applying the Kuramoto system, synchronize.

• Depth.
For each of the graph types that were analyzed, we looked for the depth
of its transition graph, that is, the length of the longest path. In the next
figure, we show the behavior of the growth of depth as the dimension of
each graph n grows.

Below in the table, we show the comparison between linear and non-linear case,
the pink boxes refer to the exactly same behaviors. In cases where an asterisk
(*) appears, it is because it is faster. For the case of small world networks, as
we said before, we did not find initial conditions that synchronize to do the
analysis, that is why the empty sign is shown in the column of the non-linear
case.

Graph Property Linear case Non-linear case
Unfeasible subgraphs Exp Exp

Depth Polynomial Polynomial
Path length distribution Normal Normal

Kn

Number of paths Exp Exp
Unfeasible subgraphs Exp Exp

Depth Linear Linear*
Path length distribution Normal Normal*

Kn,n

Number of paths Exp Exp*
Unfeasible subgraphs 0 0

Depth Linear Linear*
Path length distribution Normal Normal*

Cn

Number of paths Exp Exp*
Unfeasible subgraphs Exp Exp

Depth Linear Linear*
Path length distribution Normal Normal*

pr = 0

Number of paths Exp Exp*
Unfeasible subgraphs Exp Exp

Depth Linear ∅
Path length distribution Normal ∅pr = 1/3

Number of paths Exp ∅
Unfeasible subgraphs Exp Exp

Depth Linear ∅
Path length distribution Normal ∅pr = 2/3

Number of paths Exp ∅
Unfeasible subgraphs Exp Exp

Depth Linear ∅
Path length distribution Normal ∅

C(n, k)

pr = 1

Number of paths Exp ∅
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