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Parametric instability - A naive approach by Mathieu equation

Multi-scale approach

System and equations of motion

Modal description :

Y:(XQ—I—Xl—
X = (Xo— X, —

Equations of motion :
Y = —Uysin(Y) cos(X)
X = —2KX — Uycos(Y)sin(X)

Nonlinear coupling between the two

modes induced by the underlying

potential

d)/2 <> Translation
d)/2 <> Vibration

m Without translation of
the center of mass :

Y =0
X ~ —w?X

Mass .

Y ~ C(vy)sin(w(wt)

Mathieu equation :
- Highlights a possible parametric instability of X
- Does not include energy conservation

Phase diagram of the dimer
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Unstable 4+ Erratic motion

m E < 4U, : Translation mode (Y') transfers sufficient
energy to stretch the dimer over more than a
half-period of the underlying potential. This stretching
results in a possibility for the center of mass to
overcome its portential barrier and then an erratic
motion
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m E > 4U, - The center of mass (Y) has sufficient

energy to overcome the potential barrier. The addition
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m With translation of the center of

X ~ —w ()X = —wi[l + h(w) cos(w(v)t)]X

Parametric excitation of the vibration mode

Approximate solutions :

YEEYl ——€3Y3 T ... +h 82 — V02/4U0: E/4Uo
X~eXi+eX3+ ... ! Y(t) = Y(tgy=t, t, = £°t) same for X(t)
Developed equations of motion :

X2 I y3
{YY 6

N = QK+UX:@er K = 2K

This developement leads to equations of amplitudes and exhibits two constants of

with assumption

motion.
Constants of motion :
Y = acos(¢) 2 | B2 — -
| a-+ b- = E <— energy conservation
X — bCOS(w) W|th bt 22 h2 (9) R - J ; '[:
6 — o) — o) : ;- COS = J <— energy transfer

Stables regions

m E < 4U; : The two modes behave like two weakly coupled oscillators.
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saturated and periodic resonance of the dimer vibration.

ot this drift motion and the parametric instability of

the vibration mode results in an erratic motion
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m E > 4Uy : The center of mass (Y) has sufficient energy to overcome the
potential barrier and we observe a classic drift motion.
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Instable region E < 4U; T heoretical predictions

Parametric excitation of translation mode (Y') on vibration mode (X)
sufficient to trigger parametric instability. This instability results in a

m Boundary instability :
Numerical simulations and theoretical predictions show that the onset of

instability occurs for E > 8K

m Amplitude extrema :
The resonance stops when the instability condition is no longer fulfilled.
The extrema Y, and X,,.x of Y and X envelopes are given by :
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