Paths to synchronization

Andrea España^{1,2}, Xavier Leoncini¹ & Edgardo Ugalde²

- ¹ Centre de Physique Théorique, Aix-Marseille Université, Campus de Luminy, 163 Avenue de Luminy, 13009 Marseille, Francia
- ² Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6 Zona Universitaria, 78290, San Luis Potosí, Mexico

andreae@mail.ifisica.uaslp.mx

This work shows a new approach to the study of dynamic systems that act on a graph $\mathcal{G} = (V, E)$ and that synchronize. As a first example, we take a simple linear system, known as the Laplacian associated with the adjacency matrix of \mathcal{G} the ODE on $\mathbb{R}^{|V|}$

$$\frac{d}{dt}x = L_{\mathcal{G}}(x),\tag{1}$$

where |V| = n and $L_{\mathcal{G}}$ is the Laplacian matrix of the adjacency matrix of \mathcal{G} . Which can also be written as:

$$\frac{d}{dt}x_k = \sum_{j \in \mathcal{V}(k)} (x_j - x_k),\tag{2}$$

where x_k are the coordinates of the vector x and $\mathcal{V}(k)$ denotes the set of closest neighbors of vertex k.

This system is such that the diagonal

$$\Delta = \{ x \in \mathbb{R}^n : x_i = x_j \ \forall \ 0 \le i \le j \le n \}$$

$$\tag{3}$$

is a global attractor, that is, such that $x(t) \to \Delta$ as $t \to \infty$ for all initial condition $x \in \mathbb{R}^n$.

The second system that we analyze is the nonlinear system, known as the Kuramoto Model which is the ODE on $\mathbb{R}^{|V|}$

$$\frac{d}{dt}\varphi_k = \omega_k + \sigma \sum_{j \in \mathcal{V}(k)} \sin(\varphi_j - \varphi_k),\tag{4}$$

where $\mathcal{V}(k)$ denotes the set of closest neighbors of node k, the natural frequencies are distributed according to some probability density $\omega \mapsto g(\omega)$ and σ is the coupling strength with a suitable scale, so that the model has a good behavior when $|V| = n \to \infty$. The conditions under which we observe synchronization behaviors are well known.

We make a comparative study of both systems with the approach proposed here.

References

- 1. A. JAMAKOVIC & P. VAN MIEGHEM, The Laplacian Spectrum of Complex Networks, *Proceedings of the European Conference on Complex Systems*, Oxford, September 25-29, (2006).
- 2. F. A. RODRIGUES, T. K. D. M. PERON, P. JI, & J. KURTHS, The Kuramoto model in complex networks, *Phys. Rep.*, **610**, 1 (2016).