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This work shows a new approach to the study of dynamic systems that act on a graph G = (V| E) and
that synchronize. As a first example, we take a simple linear system, known as the Laplacian associated
with the adjacency matrix of G the ODE on RIV!
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where |[V| =n and Lg is the Laplacian matrix of the adjacency matrix of G. Which can also be written
as:
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where xy, are the coordinates of the vector x and V(k) denotes the set of closest neighbors of vertex k.
This system is such that the diagonal
A={zeR":z;=2,¥V0<i<j<n} (3)
is a global attractor, that is, such that x(f) — A as t — oo for all initial condition z € R™.

The second system that we analyze is the nonlinear system, known as the Kuramoto Model which is
the ODE on RIV
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jeV(k)
where V(k) denotes the set of closest neighbors of node k, the natural frequencies are distributed
according to some probability density w — g(w) and o is the coupling strength with a suitable scale,
so that the model has a good behavior when |V| = n — oo. The conditions under which we observe
synchronization behaviors are well known.

We make a comparative study of both systems with the approach proposed here.
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