Geometry and topology tango in mechanics

Marcelo Guzmán, Denis Bartolo, David Carpentier

Laboratoire de Physique, École Normale Supérieure de Lyon, 46 allée d'Italie, 69006, Lyon, France marcelo.guzman-jara@ens-lyon.fr

After an introduction to topological insulators in mechanics, I will present a generic framework to describe, detect and design robust zero-energy deformations in periodic and amorphous metamaterials. This framework relies on a fundamental symmetry of the vibrational spectra shared not only by all elastic mechanical structures but also by numerous photonic, electronic, and acoustic materials.

I will introduce two central quantities to count zero-energy states of mechanical metamaterials : the chiral charge and the chiral polarization. I will then show how they can be effectively used to go beyond the celebrated Maxwell count of floppy and self-stress modes in periodic mechanical structures. In disordered materials, I will show how simple yet generic geometrical rules makes it possible to detect localized zero energy deformations at the junction between regions of space hosting inequivalent topological phases. I will close my talk presenting robust guidelines to engineer zero-mode waveguides in amorphous metamaterials (fig. 1).

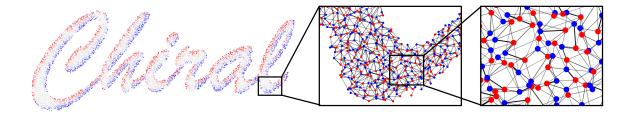


Figure 1. Waveguide in a disordered metamaterial. Left : Amorphous metamaterial conducting zeroenergy modes (red and blue) at the edges, forming the word "Chiral". **Right** : Details of the system connectivity, where red and blue indicate the two different lattices.

Références

1. M. GUZMÁN, D. BARTOLO, D. CARPENTIER, Geometry and Topology Tango in Chiral Materials, arXiv preprint arXiv :2002.02850.