Subgrid stress tensor modeling in homogeneous isotropic turbulence using 3D convolutional neural network - A teaser



Nathaniel Saura<sup>1,2</sup>, Thomas Gomez<sup>2</sup>

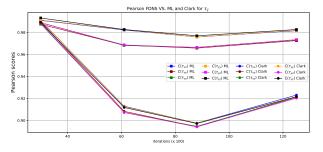


## General scope of our work

- The intrinsic multi-scale nature of Turbulent flows imposes most of the time a computational modeling, but constants or hypotheses made restrain model's accuracy to peculiar cases
- In the same time artificial intelligence (AI) algorithms seem to be usable to design a model solely based on available fields such as filtered quantity in a LES approach

## What we propose

- Al model based on 3D-convolutions being able to predict SGS tensor components  $\tau_{ij}$  in a HIT from the *diced* filtered velocity field  $\overline{u}_i$ ; where :
  - > The cube length is given by the Kraichnan Spectral Eddy Viscosity
  - > The AI is trained on a simulation with  $Re_{\lambda} = 90$  and tested on ones which  $Re_{\lambda}$  is up to 240 without significant accuracy loss at tensorial, vectorial and scalar levels


<sup>1-</sup> Laboratoire PIIM, Aix-Marseille Université, UMR 7345

<sup>2-</sup> Univ. Lille, CNRS, ONERA, Arts et Metiers Institute of Technology, Centrale Lille, UMR 9014 - LMFL - Kampé de Fériet

## Some results

| Scores              | $\tau_{\rm XX}$ | $\tau_{xy}$    | $\tau_{\rm xz}$ | $\tau_{yy}$    | $\tau_{yz}$    | $\tau_{zz}$ |
|---------------------|-----------------|----------------|-----------------|----------------|----------------|-------------|
| Pearson             | 0.98 /          | 0.97 /         | 0.97 /          | 0.98 /         | 0.97 /         | 0.98 /      |
|                     | 0.92            | 0.92           | 0.92            | 0.92           | 0.92           | 0.92        |
| $1 - \mathcal{R}^2$ | 0.04 /<br>0.33  | 0.05 /<br>0.16 | 0.05 /<br>0.16  | 0.04 /<br>0.34 | 0.05 /<br>0.16 | 0.04 / 0.34 |
| Er                  | 0.15 /          | 0.23 /         | 0.23 /          | 0.15 /         | 0.23 /         | 0.15 /      |
|                     | 0.43            | 0.40           | 0.40            | 0.43           | 0.40           | 0.43        |

Table of correlation comparisons between  $\tau_{ii}^{\rm FDNS}$  vs  $\tau_{ii}^{\rm ML}$  and  $\tau_{ii}^{\rm FDNS}$ vs  $\tau_{ii}^{\text{Clark}}$ 



Pearson correlations through iterations (and turbulent regimes

 For 3D comparisons, scores on other level, 3D-Unet Architecture and features and more - see you at the poster presentation :)