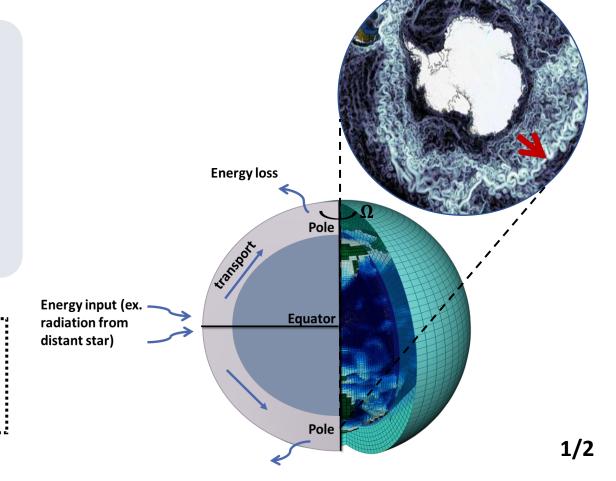
Rencontre du non-linéaire 2023

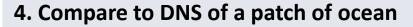
Vertical structure of buoyancy transport by ocean baroclinic turbulence

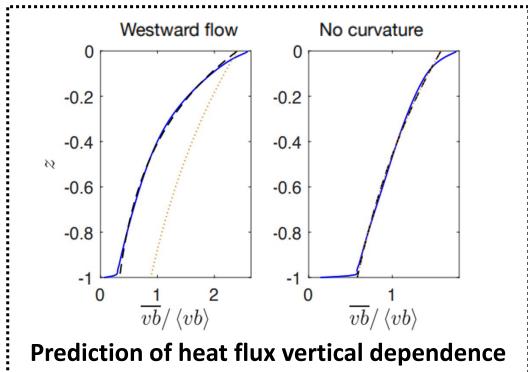

<u>Julie Meunier</u>¹, Basile Gallet¹, Benjamin Miquel²

¹SPEC, CEA Paris Saclay, CNRS UMR 3680, Université Paris-Saclay ²Univ Lyon, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, LMFA

- Ocean is subjected to baroclinic instability that transports heat from the equator to the pôles
- Forms turbulent structures at mesoscales (20-80km)
- Associated heat transport have to be parameterized for Global Circulation Models (coarser grid)

- Amplitude
- Vertical structure


Vertical structure of buoyancy transport by ocean baroclinic turbulence



Julie Meunier, Basile Gallet, Benjamin Miquel

- 1. Derive a diffusion tensor directly from dynamics of a patch of ocean relating fluxes and background gradients
- 2. Find additional constraints on the transport coefficients
- 3. Solve for the vertical structure of the mesoscale heat fluxes

