

Aix*Marseille

Socialement engagée

Suppression of wall modes in rapidly-rotating Rayleigh-Bénard convection

Louise Terrien, Benjamin Favier and Edgar Knobloch

Images of several extreme rotating convection setups. (a) "RoMag" at UCLA (liquid gallium, Pr \approx 0.025), (b) Trieste experiment at ICTP (cryogenic liquid He, Pr \approx 0.7) (c) "NoMag" at UCLA (water, Pr \approx 4–7), (d) "U-Boot" at the Max Planck Institute for Dynamics and Self-Organization (SF6, N2, He gas, Pr \approx 0.8) and (e) "TROCONVEX" at Eindhoven University of Technology (water, Pr \approx 2–7). (*Cheng et al.* 2018)

Heat flux field over a section of the cylinder, at z=H/2. (Zhang et al. 2019)

Aix*Marseille

Suppression of wall modes in rapidly-rotating Rayleigh-Bénard convection

Louise Terrien, Benjamin Favier and Edgar Knobloch

Suppression of the wall modes with a barrier by increasing the width ϵ (*Terrien et al.* 2023)

