Numerical and experimental direct observation of vortex reconnection in a turbulent swirling flow

Abhishek Harikrishnan¹, Adam Cheminet¹, Damien Geneste¹, Antoine Barlet¹, Christophe Cuvier², François Daviaud¹, Jean-Marc Foucaut², Jean-Philippe Laval², Cécile Wiertel¹, Caroline Nore³, Melvin Creff³, Hugues Faller¹, Loïc Cappanera⁴, Jean-Luc Guermond⁵, Benjamin Musci¹, Jean Le Bris¹, Bérengère Dubrulle¹

¹Service de Physique de l'Etat Condensé, CEA Paris-Saclay, France
²Laboratoire de Mécanique des Fluides de Lille, 59655 Villeneuve d'Ascq, France
³Université Paris-Saclay, LISN, CNRS, UMR 9015, France
⁴Dep. of Mathematics, University of Houston, Texas 77204, USA
⁵Dep. of Mathematics, Texas A&M University, Texas 77843, USA

March 2024

Vortex reconnection in the von Kármán (VK) flow

Introduction Our approach

Goal: Identify if reconnecting vortex structures in numerical and experimental datasets of the von Kármán flow are linked to the occurrence of finite-time singularities (FTS).

Theorem: Beale, Kato, and Majda (1984) proved that if a FTS occurs at time t_c , then $\int_0^{t_c} ||\omega(\mathbf{x}, t)||_{\infty} dt = \infty$, i.e., $\omega = \nabla \times u$ becomes unbounded as $t \to t_c$.

Vortex reconnection:

- Process where two vortices approaching closely cut and connect to each other.
- Vortex tubes with arbitrary orientations become antiparallel due to mutual induction (Siggia, 1985; Boratav, Pelz, and Zabusky, 1992; Yao and Hussain, 2022).

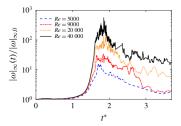


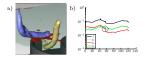
Figure 1: Time evolution of maximum vorticity magnitude at different Re (Yao and Hussain, 2022).

Figure 2: Reconnection of antiparallel vortex tubes at Re = 40,000 (Yao and Hussain, 2022).

Abhishek Harikrishnan Rencontre du non linéaire, March 2024

Methodology and initial results

Introduction Our approach


Method:

- Identify vortex structures with a suitable scalar indicator (Q, λ₂ or Δ criterion).
- Apply a threshold τ identified with percolation analysis (Harikrishnan et al., 2021).
- Filter structures having a fractal dimension less than 1.
- Track vortices with spatial overlap technique for structures having at least 50% overlap.
- Identify vortex reconnection with an Enstrophybased criterion (Kang, Yun, and Protas, 2020).
- Identify potential singularities with the Duchon-Robert indicator (Dubrulle, 2019).

What's next?

 Track large number of structures, explore sub-Kolmogorov scales η/4 (expected) with new experimental dataset.

DNS of VK at Re = 6000:

Figure 3: (a) Strong DR (red patch) can be seen at the plane of reconnection of the blue and yellow vortex structures (b) Enstrophy ξ and its components ξ_1, ξ_2, ξ_3 versus time t.

VK experiment at Re = 6300:

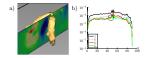


Figure 4: (a) DR patch at the plane of reconnection of the yellow vortex structures (b) Similar to figure 3 (b).

