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3 Centre d’Etudes Biologiques de Chizé, CNRS UMR 7372, Villiers-en-Bois, France.

vincent.stin@espci.fr

Research on animal surface swimming has mainly focused on small insects or on animals that use
limb-surface interactions for propulsion, such as ducks or geckos (see [1] , for a review). For the case of
snakes, apart from the pioneering observations of Hertel [2] (cf. Fig. 1.A), no measurements appear to
have been made.

We report here the results from a surface swimming experiment performed with Natricidae snakes (cf.
Fig. 1.B), where the surface waves produced by the swimming snakes have been quantified by measuring
the water surface elevation perturbation (cf. Fig. 1.B). Measurements were performed using a synthetic
Schlieren imaging method that gives an instantaneous non-intrusive measurement of the height of the
free surface η at every location in space.

Using a filtering technique based on the dispersion relation of capillary-gravity waves on the measured
wave field we show that, remarkably, a significant percentage of the waves that compose the wake pattern
travel in a direction opposite to the swimming direction . A contribution to the propulsive force of the
animal from the waves is thus expected, so the surface wave wake of the snake is not solely a drag wake,
despite its similarity with the Kelvin wake of a ship or a duck.

6.1 Introduction

Locomotion at the water’s surface is a special case of the study of swimming, but it affects

many living organisms. As reviewed by Bush and Hu (2006), numerous species of insects,

spiders, birds, fish, reptiles, and mammals move at the water-air interface using different

types of swimming, from inertial to Marangoni swimming.

As has already been mentioned several times, some snakes are more accustomed to swimming

on the surface of the water. Surface swimming in snakes was described in the pioneering

work of Hertel (1966), but no further measurements appear to have been made since.
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Figure 6.1: Variety in surface locomotion. (a) Observation of the surface swimming of Natrix
natrix by Hertel (1966). (b) Highlighting of the surface locomotion of a water strider by Hu et al.
(2003).

Swimming at the interface is more challenging than fully submerged swimming. In addition

to inertial and viscous drag, surface swimmers also have to overcome wave drag. Similar to

the displacement of a ship’s hull, a body swimming at the surface of the water will create

waves that move in the same direction as the swimmer, dragging them along. Wave drag

generated by small bodies was modelled by Raphaël and De Gennes (1996), which was later

generalized to larger bodies (Sun and Keller 2001).

The effects of an unsteady motion on wave drag have recently been modeled analytically

(Closa et al. 2010) and measured experimentally on physical models (Dode et al. 2022).

Experimental studies of human surface swimming have measured that wave drag can account

for up to 60% of the total drag (Vennell et al. 2006).
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Figure 1. (A) Observation of the surface swimming of Natrix natrix by Hertel [2]. (B) Adult Natricidae snake
swimming at the surface of the experimental tank at PMMH, ESPCI Paris (Photo: R. Godoy-Diana). The waves
produced by the passage of the snake are visible on the checkerboard pattern used to measure the water surface
height perturbation. (C) Example of the surface wake measured in the experiment.
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