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Echo-state-networks (ESN) [1,2] are known for their remarkable property of producing prescribed
autonomous dynamics by learning a simple feedback to a large recurrent network. They have served as
conceptual models for how the brain produces movement [2] and continue to inspire the design of various
artificial dynamical devices [3]. However, the principles that underly their seemingly miraculous success
remain incompletely understood. Here, we develop a weakly nonlinear theory of ESN that explains this
success in the regime where the recurrent network evolution is stable and the feedback is weak.

We analyze the prototypical network of N recurrent units (see Figure. 1) described by

dxi

dt
= −xi + g

∑

j

Mijr(xj) + bi
∑

j

wjr(xj) (1)

where M is a gaussian random matrix , b is a random “feedback” vector and r(x) is a nonlinear “acti-
vation” function, taken as usual to be tanh(x) for simplicity. The aim of the learning procedure is to
choose the vector of output synaptic weights w such that z(t) =

∑
j wjr[xj(t)]) reproduces, as best as

possible, a desired function f(t).
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autonomous dynamics by learning a simple feedback to a large recurrent network. They have served as
conceptual models for how the brain produces movement [2] and continue to inspire the design of various
artificial dynamical devices [3]. However, the principles that underly their seemingly miraculous success
remain incompletely understood. Here, we develop a weakly nonlinear theory of ESN that explains this
success in the regime where the recurrent network evolution is stable and the feedback is weak.
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where M is a gaussian random matrix , b is a random “feedback” vector and r(x) is a nonlinear “activa-
tion” function, taken as usual to be tanh(x) for simplicity. The aim of the learning procedure is to choose
the vector of output synaptic weights w such that z(t) =

P
j wjr[xj(t)]) reproduces, as best as possible,

a desired function f(t).
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Figure 1. Left: Network schematic (adapted from [2]); (Center) Function f to be learnt (green) and network
approximation z (red); (Right) Spectrum of the linear dynamics (N=100).

When the amplitude of f(t) is small, the ESN operates in a weakly nonlinear regime. We show that
the learning of the output weights w amounts to i) positioning the eigenvalues of the linear dynamics
at locations close to those of the Fourier frequencies of f(t) and ii) constraining the weakly nonlinear
dynamics to converge to the correct amplitudes for these Fourier modes. We further provide analytical
predictions for when the nonlinear dynamical attractors are stable corresponding to successful learning
that is strongly N -dependent. We expect our theory to be applicable to various generalizations of Eq. (1),
for instance based on other dynamical units [3], or for more structured networks with di↵erent unit classes.
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Figure 1. Left: Network schematic (adapted from [2]); (Center) One period of function f to be learnt (green)
and network approximation z (red); (Right) Spectrum of the linear dynamics (N=100).

When the amplitude of f(t) is small, the ESN operates in a weakly nonlinear regime. We show that
the learning of the output weights w amounts to i) positioning the eigenvalues of the linear dynamics
at locations close to those of the Fourier frequencies of f(t) and ii) constraining the weakly nonlinear
dynamics to converge to the correct amplitudes for these Fourier modes. We further provide analytical
predictions for when the nonlinear dynamical attractors are stable corresponding to successful learning
that is strongly N -dependent. We expect our theory to be applicable to various generalizations of Eq. (1),
for instance based on other dynamical units [3], or for more structured networks with different unit classes.
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