Biomimetic colour engineering from nature to applications


Department of Chemistry, Cambridge, UK

The most brilliant colours in nature are obtained by structuring transparent materials on the scale of the wavelength of visible light. By designing the dimensions of such nanostructures, it is possible to achieve extremely intense colourations over the entire visible spectrum without using pigments or colorants. Colour obtained through structure, namely structural colour, is widespread in the animal and plant kingdom [1]. Such natural photonic nanostructures are generally synthesised in ambient conditions using a limited range of biopolymers. Given these limitations, an amazing range of optical structures exists: from very ordered photonic structures [2], to partially disordered [3], to completely random ones [4].

In this seminar, I will introduce some striking example of natural photonic structures [2–4] and share some insight on their development. Then I will review our recent advances to fabricate bio-mimetic photonic structures using the same material as nature. Developing biomimetic structures with cellulose enables us to fabricate novel photonic materials using low cost polymers in ambient conditions [6, 7]. Importantly, it also allows us to understand the biological processes at work during the growth of these structures in plants.

[1] Kinoshita, S. et al., Physics of structural colors, Rep. Prog. Phys., 71, 076401 (2008).
[2] Vignolini, S. et al., Pointillist structural color in Pollia fruit, Proc. Natl. Acad. Sci. USA, 109, 15712–15716 (2012).
[3] Moyroud, E. et al. , Disorder in convergent floral nanostructures enhances signalling to bees, Nature, 550, 469 (2017).
[4] Burresi M. et al., Bright-white beetle scales optimise multiple scattering of light, Sci. Rep.4,  727 (2014).
[5] Parker R. et al., The Self-Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance. Adv. Mater., 30, 1704477 (2018).
[6] Parker R. et al., Hierarchical self-assembly of cellulose nanocrystals in a confined geometry, ACS Nano, 10, 8443–8449 (2016).
[7] Liang H.-L. et al., Roll-to-roll fabrication of touch-responsive cellulose photonic laminates, Nat. Commun., 9, 4632 (2018).


Formation d'une circulation grande échelle (plus de détails...)

Toutes les images...


Auto-organisation en physique et en biologie, morphogenèse, ondes-particules, turbulence, physique non linéaire, Colloque International en mémoire d’Yves Couder à l'ENS et UPCité, 4 Juin 2024

Physics of Wave Turbulence and beyond: Celebrating the 60th birthday of Sergey Nazarenko., Les Houches, 2 Septembre 2024

19e Journées de l'Hydrodynamique, Ecole Centrale de Nantes, 26 Novembre 2024

Toutes les conférences...