The Navier-Stokes singularity problem

Keith MOFFATT

DAMTP, Cambridge


Much interest attaches to the question of regularity of the Navier-Stokes equations: given smooth initial conditions of finite energy, does the solution remain smooth for all finite time, or alternatively is it possible for a singularity to develop within a finite time? We have addressed this problem by choosing a configuration which is widely favoured for the development of a singularity, and which lends itself to analytical investigation. Our detailed analysis shows that a finite-time singularity cannot occur for this configuration, but that an arbitrarily large amplification of vorticity can be realised within a finite time if the Reynolds number of the initial velocity field is sufficiently large. The manner in which viscosity suppresses the incipient singularity, as revealed by the analysis, will be described in the lecture.

This work is in collaboration with Yoshifumi Kimura, University of Nagoya.


                                                                                                                                                                                                                                               

IMAGES

Contrôler les oscillations d’une goutte (plus de détails...)

Toutes les images...

CONFÉRENCES

Wave Turbulence and Extreme Events, CISM in Udine (Italy), 18 Juin 2018

International Conference on Applications in Nonlinear Dynamics (ICAND 2018), Maui, Hawaii (USA), 5 Août 2018

Dynamics Days Europe, Loughborough University, 3 Septembre 2018

Toutes les conférences...